Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Sebastian Kripfganz
    replied
    Not sure what you mean by "weak form". I would say, there is conflicting evidence and a clear conclusion cannot be drawn.

    Leave a comment:


  • Marco Giansoldati
    replied
    Dear sebastian,

    Thank you very much for your kind reply.

    Is it thus correct to infer that if the Engle-Granger test does not show cointegration, but the Pesaran-Shin-Smith indicates the presence of long-term association, the series present a weak form of long-term relationship? I hope this does not seem too bizarre.

    Thanks

    Leave a comment:


  • Sebastian Kripfganz
    replied
    The speed-of-adjustment coefficient being different from zero is a necessary but not sufficient condition for a cointegrating relationship. There is nothing that guarantees that the Engle-Granger test and the Pesaran-Shin-Smith test will always yield the same conclusion.

    Leave a comment:


  • Marco Giansoldati
    replied
    Dear Sebastian,

    I followed your indications and got good results with no serial correlation in the ardl exploiting the aic lag selection, for two of the three countries I am looking at.

    Yet, for one of the countries there is something tricky. I noticed a significant speed of adjustment which lies between 0 and -1. In addition most of the coefficients in the long-run are significant. Here are the results.

    Code:
    . ardl mgsv rmp nc itv xgsv LVix if ifscode==941, ec1 lags(1 3 0 4 0 3) regstore(ardl2)
    
    ARDL regression
    Model: ec
    
    Sample: 1996q1 - 2015q4 
    Number of obs  = 80
    Log likelihood = 174.74148
    R-squared      = .79215454
    Adj R-squared  = .73936839
    Root MSE       = .03069176
    
    ------------------------------------------------------------------------------
          D.mgsv |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
    ADJ          |
            mgsv |
             L1. |  -.4433418   .0896522    -4.95   0.000    -.6224974   -.2641863
    -------------+----------------------------------------------------------------
    LR           |
             rmp |
             L1. |  -1.052398   .4343518    -2.42   0.018    -1.920381   -.1844149
                 |
              nc |
             L1. |     1.3357   .2414046     5.53   0.000     .8532912    1.818108
                 |
             itv |
             L1. |  -.1411704   .1032663    -1.37   0.176    -.3475317    .0651909
                 |
            xgsv |
             L1. |   .9868565   .2768151     3.57   0.001     .4336856    1.540027
                 |
            LVix |
             L1. |   .0316129   .0463461     0.68   0.498    -.0610025    .1242283
    -------------+----------------------------------------------------------------
    SR           |
             rmp |
             D1. |  -.6759413   .2137826    -3.16   0.002    -1.103152   -.2487309
             LD. |   .1832689   .1789283     1.02   0.310    -.1742908    .5408286
            L2D. |    .418125   .1975192     2.12   0.038     .0234144    .8128357
                 |
              nc |
             D1. |   .5921716   .1287776     4.60   0.000     .3348301    .8495131
                 |
             itv |
             D1. |   .2427257   .0502375     4.83   0.000     .1423341    .3431173
             LD. |   .1387496   .0494968     2.80   0.007     .0398381    .2376612
            L2D. |    .069666    .049202     1.42   0.162    -.0286565    .1679884
            L3D. |   .0835589   .0447848     1.87   0.067    -.0059364    .1730542
                 |
            xgsv |
             D1. |   .4375148   .0837006     5.23   0.000     .2702524    .6047771
                 |
            LVix |
             D1. |    .001864   .0181743     0.10   0.919    -.0344544    .0381824
             LD. |  -.0593211   .0213976    -2.77   0.007    -.1020808   -.0165614
            L2D. |  -.0541236   .0190216    -2.85   0.006    -.0921353   -.0161119
                 |
           _cons |  -1.954917   .3880763    -5.04   0.000    -2.730425   -1.179408
    ------------------------------------------------------------------------------
    
    . 
    end of do-file
    Yet, there is an issue with the result of the -egranger- command. It indicates the absence of cointegration, even if I increase the lags to four or more. This is reported here below.

    Code:
    . egranger mgsv rmp nc itv xgsv if ifscode==941
    Replacing variable _egresid...
    
    Engle-Granger test for cointegration                  N (1st step)  =       84
                                                          N (test)      =       83
    ------------------------------------------------------------------------------
                      Test         1% Critical       5% Critical      10% Critical
                   Statistic           Value             Value             Value
    ------------------------------------------------------------------------------
     Z(t)             -3.890            -5.228            -4.586            -4.262
    
    Critical values from MacKinnon (1990, 2010)
    or here:

    Code:
    . egranger mgsv rmp nc itv xgsv if ifscode==941, regress
    Replacing variable _egresid...
    
    Engle-Granger test for cointegration                  N (1st step)  =       84
                                                          N (test)      =       83
    ------------------------------------------------------------------------------
                      Test         1% Critical       5% Critical      10% Critical
                   Statistic           Value             Value             Value
    ------------------------------------------------------------------------------
     Z(t)             -3.890            -5.228            -4.586            -4.262
    
    Critical values from MacKinnon (1990, 2010)
    ------------------------------------------------------------------------------
    Engle-Granger 1st-step regression
    ------------------------------------------------------------------------------
            mgsv |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
             rmp |  -.4261249   .1679457    -2.54   0.013    -.7604125   -.0918372
              nc |   .7540739   .1180109     6.39   0.000     .5191791    .9889686
             itv |   .1368718   .0415571     3.29   0.001     .0541545    .2195891
            xgsv |   .6422247   .1119674     5.74   0.000     .4193591    .8650903
           _cons |  -1.993745   .4072917    -4.90   0.000    -2.804439   -1.183051
    ------------------------------------------------------------------------------
    Engle-Granger test regression
    ------------------------------------------------------------------------------
      D._egresid |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
        _egresid |
             L1. |  -.3157309   .0811657    -3.89   0.000    -.4771953   -.1542664
    ------------------------------------------------------------------------------
    
    . 
    end of do-file
    I was wondering if a speed-of-adjustment coefficient different from zero may imply that there is cointegrating relationship among the dependent variable and the independent variables. Maybe I am wrong but I was puzzled by the results of the -egranger- command. Do you have any suggestions in this respect?

    Many thanks

    Marco

    Leave a comment:


  • Marco Giansoldati
    replied
    Dear sebastian,

    I am extremely thankful for your detailed answer.

    I will try to implement it and I will kee you timely posted.

    Many many thanks.

    Marco

    Leave a comment:


  • Sebastian Kripfganz
    replied
    As I said, I am not aware of any general rule about how to determine an initial maximum lag order. Say, you stick with the default of ardl, that is maxlags(4). You could subsequently run a standard time-series test for autocorrelation of the residuals; see help regress postestimation time series, for example:
    Code:
    . webuse lutkepohl2
    
    . ardl ln_inv ln_inc ln_consump, regstore(ardl_bic)
    
    ARDL regression
    Model: level
    
    Sample: 1961q1 - 1982q4
    Number of obs  = 88
    Log likelihood = 158.83176
    R-squared      = .9918295
    Adj R-squared  = .9913313
    Root MSE       = .04123219
    
    ------------------------------------------------------------------------------
          ln_inv |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
          ln_inv |
             L1. |   .8432219   .0588646    14.32   0.000     .7261214    .9603224
                 |
          ln_inc |  -.4477328   .3143463    -1.42   0.158    -1.073068    .1776022
                 |
      ln_consump |
             --. |     1.9247   .5487929     3.51   0.001     .8329761    3.016424
             L1. |  -.3682414   .5622263    -0.65   0.514    -1.486689    .7502058
             L2. |  -.9598887   .4300221    -2.23   0.028     -1.81534   -.1044377
                 |
           _cons |  -.0460065   .0706528    -0.65   0.517    -.1865575    .0945445
    ------------------------------------------------------------------------------
    
    . estimates restore ardl_bic
    (results ardl_bic are active now)
    
    . estat durbinalt
    
    Durbin's alternative test for autocorrelation
    ---------------------------------------------------------------------------
        lags(p)  |          chi2               df                 Prob > chi2
    -------------+-------------------------------------------------------------
           1     |          3.730               1                   0.0534
    ---------------------------------------------------------------------------
                            H0: no serial correlation
    
    . estat bgodfrey
    
    Breusch-Godfrey LM test for autocorrelation
    ---------------------------------------------------------------------------
        lags(p)  |          chi2               df                 Prob > chi2
    -------------+-------------------------------------------------------------
           1     |          3.874               1                   0.0490
    ---------------------------------------------------------------------------
                            H0: no serial correlation
    (Notice that I have not used estat dwatson because that would require strictly exogenous regressors but the lagged dependent variable in an ARDL model is not strictly exogenous by construction.)

    Both the alternative Durbin test and the Breusch-Godfrey-LM test have a p-value close to 5% which leaves considerable doubt about potential serial correlation. By default, the lag selection above was done with the Schwarz-Bayesian information criterion (BIC) that tends to choose more parsimonious models than the Akaike information criterion (AIC). Let us redo the analysis with the AIC instead:
    Code:
    . ardl ln_inv ln_inc ln_consump, regstore(ardl_aic) aic
    
    ARDL regression
    Model: level
    
    Sample: 1961q1 - 1982q4
    Number of obs  = 88
    Log likelihood = 163.42433
    R-squared      = .99263931
    Adj R-squared  = .99189393
    Root MSE       = .03987169
    
    ------------------------------------------------------------------------------
          ln_inv |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
          ln_inv |
             L1. |   .6361522   .1066167     5.97   0.000     .4239369    .8483674
             L2. |   .0544957   .1292958     0.42   0.675    -.2028612    .3118526
             L3. |   .1947748   .1074963     1.81   0.074    -.0191911    .4087407
                 |
          ln_inc |  -.7132999   .3172674    -2.25   0.027    -1.344805    -.081795
                 |
      ln_consump |
             --. |   2.200332   .5534362     3.98   0.000     1.098745    3.301919
             L1. |  -.0080402   .5827281    -0.01   0.989    -1.167931    1.151851
             L2. |  -.4564319   .5622027    -0.81   0.419    -1.575468    .6626045
             L3. |  -.9016915   .4374505    -2.06   0.043    -1.772415    -.030968
                 |
           _cons |  -.0867693   .0709145    -1.22   0.225    -.2279212    .0543825
    ------------------------------------------------------------------------------
    
    . estimates restore ardl_aic
    (results ardl_aic are active now)
    
    . estat durbinalt
    
    Durbin's alternative test for autocorrelation
    ---------------------------------------------------------------------------
        lags(p)  |          chi2               df                 Prob > chi2
    -------------+-------------------------------------------------------------
           1     |          0.021               1                   0.8840
    ---------------------------------------------------------------------------
                            H0: no serial correlation
    
    . estat bgodfrey
    
    Breusch-Godfrey LM test for autocorrelation
    ---------------------------------------------------------------------------
        lags(p)  |          chi2               df                 Prob > chi2
    -------------+-------------------------------------------------------------
           1     |          0.024               1                   0.8769
    ---------------------------------------------------------------------------
                            H0: no serial correlation
    We notice that the optimal lag order based on the AIC is higher for the lagged dependent variable and ln_consump than based on the BIC. The serial-correlation tests then both clearly do not reject the null hypothesis of no serial correlation any more. Thus, this is probably a reasonable lag selection and we do not have to increase the maximum lag order any further. Another indication is that all variables' lag orders are smaller than the maximum lag order of 4.

    If the latter was not the case and/or we would still find evidence of remaining serial correlation, we could increase the maximum lag order to, say, 5, and redo the analysis. This stepwise procedure has different problems (keyword: pretesting) but I would not worry too much about it, provided your initial maximum lag order is neither too small nor too large.

    Another way to think about the initial maximum lag order is motivated from the frequency of your data. With quarterly data, a maximum lag order of 4 seems very reasonable to capture seasonal fluctuations. With monthly data, you might want to start with a maximum lag order of 12, provided your time series is long enough such that the number of estimated parameters is still reasonably small relative to the sample size.

    Once you have found a reasonable lag order, you can then reestimate the ARDL model in the error-correction representation and subsequently run the bounds test:
    Code:
    . ardl ln_inv ln_inc ln_consump, lags(3 0 3) ec1
    
    ARDL regression
    Model: ec
    
    Sample: 1960q4 - 1982q4
    Number of obs  = 89
    Log likelihood = 165.33303
    R-squared      = .29433631
    Adj R-squared  = .22376994
    Root MSE       = .0398231
    
    ------------------------------------------------------------------------------
        D.ln_inv |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
    ADJ          |
          ln_inv |
             L1. |  -.1104725   .0610698    -1.81   0.074    -.2320052    .0110601
    -------------+----------------------------------------------------------------
    LR           |
          ln_inc |
             L1. |  -6.032112   5.026647    -1.20   0.234    -16.03546    3.971234
                 |
      ln_consump |
             L1. |   7.090765   5.183768     1.37   0.175    -3.225261    17.40679
    -------------+----------------------------------------------------------------
    SR           |
          ln_inv |
             LD. |  -.2491467   .1081415    -2.30   0.024    -.4643551   -.0339383
            L2D. |  -.1870067   .1070165    -1.75   0.084    -.3999763    .0259629
                 |
          ln_inc |
             D1. |  -.6663827   .3125476    -2.13   0.036    -1.288372   -.0443931
                 |
      ln_consump |
             D1. |   2.093388   .5397916     3.88   0.000     1.019169    3.167608
             LD. |   1.300412   .4360514     2.98   0.004     .4326424    2.168182
            L2D. |   .9061069   .4368897     2.07   0.041     .0366686    1.775545
                 |
           _cons |  -.0896716   .0707544    -1.27   0.209    -.2304773    .0511341
    ------------------------------------------------------------------------------
    
    . estat btest
    
    Pesaran/Shin/Smith (2001) ARDL Bounds Test
    H0: no levels relationship             F =  3.873
                                           t = -1.809
    
    Critical Values (0.1-0.01), F-statistic, Case 3
    
          | [I_0]   [I_1]  | [I_0]   [I_1]  | [I_0]   [I_1]  | [I_0]   [I_1]
          |    L_1     L_1 |   L_05    L_05 |  L_025   L_025 |   L_01    L_01
    ------+----------------+----------------+----------------+---------------
      k_2 |   3.17    4.14 |   3.79    4.85 |   4.41    5.52 |   5.15    6.36
    accept if F < critical value for I(0) regressors
    reject if F > critical value for I(1) regressors
    
    Critical Values (0.1-0.01), t-statistic, Case 3
    
          | [I_0]   [I_1]  | [I_0]   [I_1]  | [I_0]   [I_1]  | [I_0]   [I_1]
          |    L_1     L_1 |   L_05    L_05 |  L_025   L_025 |   L_01    L_01
    ------+----------------+----------------+----------------+---------------
      k_2 |  -2.57   -3.21 |  -2.86   -3.53 |  -3.13   -3.80 |  -3.43   -4.10
    accept if t > critical value for I(0) regressors
    reject if t < critical value for I(1) regressors
    
    k: # of non-deterministic regressors in long-run relationship
    Critical values from Pesaran/Shin/Smith (2001)
    
    . estat btest, n
    
    Pesaran/Shin/Smith (2001) ARDL Bounds Test
    H0: no levels relationship             F =  3.873
    
    Critical Values (0.1-0.01), F-statistic, Case 3
    
          | [I_0]   [I_1]  | [I_0]   [I_1]  | [I_0]   [I_1]
          |    L_1     L_1 |   L_05    L_05 |   L_01    L_01
    ------+----------------+----------------+---------------
      k_2 |   3.26    4.25 |   3.94    5.04 |   5.41    6.78
    accept if F < critical value for I(0) regressors
    reject if F > critical value for I(1) regressors
    
    k: # of non-deterministic regressors in long-run relationship
    Critical values from Narayan (2005), N=80
    Based on the asymptotic critical values, the F-test is inconclusive at the 5% level (but close to the lower bound) and does not reject the null hypothesis at smaller levels. The t-test is clearly not rejected at any standard significance level. If we look at the small-sample critical values for the F-test, the lower bound critical value exceeds the test statistic even at the 5% level. Taken together, we found clear evidence that there is no long-run relationship based on this example.

    I hope that helps.

    Leave a comment:


  • Marco Giansoldati
    replied
    Dear sebastian,

    Thank you very much.

    My apologies for the numerous questions and if this one is silly. What would be the steps to find a reasonable lag, or a set of reasonable lags?

    Many thanks.

    Marco

    Leave a comment:


  • Sebastian Kripfganz
    replied
    That's generally true, yes. On the other side, as you have experienced, including too many lags results in serious overfitting problems. That is why a reasonable lag order selection is both important and difficult at the same time.

    Leave a comment:


  • Marco Giansoldati
    replied
    Dear Sebastian Kripfganz,

    Thank you very much for your reply.

    I was also wondering if there might be a trade off between the maximum number of lags and the presence of serial correlation. The higher the number of lags the lower the risk of serial correlation, right?

    Many thanks

    Marco

    Leave a comment:


  • Sebastian Kripfganz
    replied
    Out of the top of my head, I am not aware of a suitable rule to determine the maximum lag order to be considered in an ARDL model.

    Leave a comment:


  • Marco Giansoldati
    replied
    Dear Sebastian Kripfganz,

    I do thank you very much for you kind and prompt reply.

    I am concerned with the number of maxlags be included. Is there a criterion that I can rely on to pick the optimum maxlags?

    Many thanks again.

    Marco

    Leave a comment:


  • Sebastian Kripfganz
    replied
    The long-run coefficients are a function of the speed-of-adjustment coefficient. The latter appears in the denominator of the long-run coefficients. Because it is very small (almost zero), the reported long-run coefficients necessarily become very large. Note that a speed-of-adjustment coefficient of zero technically implies that there is no cointegrating relationship among the dependent variable and the independent variables, and that the dependent variable is non-stationary. Hence, long-run coefficients are meaningless.

    That said, you are estimating 41 parameters with 69 observations. This cannot yield reliable results. A reduction of the number of lags is required, as you have done in your second example. Instead of randomly reducing the number of lags, I would suggest to use the maxlags() option of ardl.

    Leave a comment:


  • Marco Giansoldati
    replied
    Dear Sebastian Kripfganz ,

    I am testing for the presence of a long-run relationship between a set of macroeconomic variables, after reading the slides of Stata meeting held in Chicago.

    I used the following command:

    Code:
    ardl mgsv rmp nc itv xgsv LVix LGlobalEPUPPP if ifscode==946, maxlags(7) aic maxcombs(2000000) dots fast
    matrix list e(lags)
    which provides the a set of lags I employ in the following specification:
    Code:
    ardl mgsv rmp nc itv xgsv LVix LGlobalEPUPPP if ifscode==946, ec1 lags(6 7 6 0 7 7 7) regstore(ardl5)
    The result looks like the following:
    Code:
    . ardl mgsv rmp nc itv xgsv LVix LGlobalEPUPPP if ifscode==946, ec1 lags(6 7 6 0 7 7 7) regstore(ardl5)
    
    ARDL regression
    Model: ec
    
    Sample: 1998q4 - 2015q4 
    Number of obs  = 69
    Log likelihood = 207.7786
    R-squared      = .95588501
    Adj R-squared  = .86364457
    Root MSE       = .02109561
    
    -------------------------------------------------------------------------------
           D.mgsv |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    --------------+----------------------------------------------------------------
    ADJ           |
             mgsv |
              L1. |   .0011824   .3684211     0.00   0.997    -.7628762     .765241
    --------------+----------------------------------------------------------------
    LR            |
              rmp |
              L1. |  -117.3742   36536.76    -0.00   0.997    -75889.97    75655.22
                  |
               nc |
              L1. |    452.768   140809.5     0.00   0.997    -291568.3    292473.8
                  |
              itv |
              L1. |  -309.3532   96365.31    -0.00   0.997    -200158.8    199540.1
                  |
             xgsv |
              L1. |  -92.96919    29150.9    -0.00   0.997    -60548.23    60362.29
                  |
             LVix |
              L1. |  -111.0917   34574.54    -0.00   0.997     -71814.3    71592.11
                  |
    LGlobalEPUPPP |
              L1. |   196.7787   61272.01     0.00   0.997    -126873.6    127267.1
    --------------+----------------------------------------------------------------
    SR            |
             mgsv |
              LD. |  -.7698193   .4133583    -1.86   0.076    -1.627072    .0874333
             L2D. |  -.6011546   .3336204    -1.80   0.085    -1.293041    .0907316
             L3D. |  -.4666905   .2788486    -1.67   0.108    -1.044987    .1116061
             L4D. |  -.1707356   .2243865    -0.76   0.455    -.6360848    .2946135
             L5D. |   .2738664   .1452609     1.89   0.073    -.0273864    .5751192
                  |
              rmp |
              D1. |  -.4977635   .1471148    -3.38   0.003    -.8028609    -.192666
              LD. |  -.3390906    .237754    -1.43   0.168    -.8321622     .153981
             L2D. |  -.6463966   .2260095    -2.86   0.009    -1.115112   -.1776816
             L3D. |  -.5194799   .2229064    -2.33   0.029    -.9817594   -.0572003
             L4D. |  -.6262338   .2044137    -3.06   0.006    -1.050162   -.2023057
             L5D. |  -.5097497   .1873629    -2.72   0.012    -.8983166   -.1211828
             L6D. |  -.2131168   .1856316    -1.15   0.263    -.5980932    .1718595
                  |
               nc |
              D1. |  -.1878331   .3366906    -0.56   0.583    -.8860866    .5104204
              LD. |   .2164175   .3163145     0.68   0.501    -.4395786    .8724135
             L2D. |   .2843947   .3660218     0.78   0.445    -.4746881    1.043477
             L3D. |   .6038347   .3562524     1.69   0.104    -.1349876    1.342657
             L4D. |   .2999871    .338704     0.89   0.385    -.4024421    1.002416
             L5D. |  -.5897248    .278342    -2.12   0.046    -1.166971   -.0124789
                  |
              itv |
              D1. |   .3657799   .1022349     3.58   0.002     .1537577    .5778022
                  |
             xgsv |
              D1. |   .8381486   .1627303     5.15   0.000     .5006665    1.175631
              LD. |   .5862168   .4027664     1.46   0.160    -.2490695    1.421503
             L2D. |   .8408149   .3208903     2.62   0.016     .1753292    1.506301
             L3D. |   .4102869   .2401392     1.71   0.102    -.0877314    .9083051
             L4D. |  -.1290902   .2492349    -0.52   0.610    -.6459717    .3877914
             L5D. |    -.28598   .1775715    -1.61   0.122    -.6542407    .0822807
             L6D. |   .3315378   .1827353     1.81   0.083     -.047432    .7105076
                  |
             LVix |
              D1. |  -.1122472    .043141    -2.60   0.016    -.2017162   -.0227782
              LD. |  -.2618214   .0884512    -2.96   0.007    -.4452579   -.0783849
             L2D. |   -.288866   .0914218    -3.16   0.005    -.4784632   -.0992689
             L3D. |  -.2192862   .0805578    -2.72   0.012    -.3863529   -.0522195
             L4D. |  -.1940336   .0660847    -2.94   0.008    -.3310849   -.0569823
             L5D. |  -.1066013   .0429121    -2.48   0.021    -.1955955   -.0176071
             L6D. |  -.0592069   .0313052    -1.89   0.072      -.12413    .0057161
                  |
    LGlobalEPUPPP |
              D1. |   .0342402    .035667     0.96   0.347    -.0397286    .1082089
              LD. |   .2170323   .0686799     3.16   0.005      .074599    .3594655
             L2D. |   .2440361    .067782     3.60   0.002     .1034649    .3846073
             L3D. |   .1735577   .0548971     3.16   0.005      .059708    .2874074
             L4D. |    .162349   .0461701     3.52   0.002     .0665981    .2580999
             L5D. |   .0919748   .0319221     2.88   0.009     .0257723    .1581772
             L6D. |    .057422   .0292392     1.96   0.062    -.0032164    .1180603
                  |
            _cons |    .776483   .8081197     0.96   0.347    -.8994546    2.452421
    -------------------------------------------------------------------------------
    What puzzles me are the coefficients related to the long-run behaviour. They are extremely large and not significant.

    I tried to run the same regression reducing randomly the number of lags, just to check if the number of lags could be an issue. Here is the example:

    Code:
    ardl mgsv rmp nc itv xgsv LVix LGlobalEPUPPP if ifscode==946, ec1 lags(3 2 2 1 2 2 2) regstore(ardl5)
    The results is as follows:

    Code:
    . ardl mgsv rmp nc itv xgsv LVix LGlobalEPUPPP if ifscode==946, ec1 lags(3 2 2 1 2 2 2) regstore(ardl5)
    
    ARDL regression
    Model: ec
    
    Sample: 1997q3 - 2015q4 
    Number of obs  = 74
    Log likelihood = 174.94337
    R-squared      = .83380359
    Adj R-squared  = .77108797
    Root MSE       = .02688595
    
    -------------------------------------------------------------------------------
           D.mgsv |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    --------------+----------------------------------------------------------------
    ADJ           |
             mgsv |
              L1. |  -.6339296   .1788977    -3.54   0.001     -.992753   -.2751062
    --------------+----------------------------------------------------------------
    LR            |
              rmp |
              L1. |   .0134759   .0908202     0.15   0.883    -.1686863    .1956381
                  |
               nc |
              L1. |   .3847702   .2116265     1.82   0.075    -.0396989    .8092393
                  |
              itv |
              L1. |   .2217854   .0904437     2.45   0.018     .0403784    .4031925
                  |
             xgsv |
              L1. |   .7106944   .0744039     9.55   0.000     .5614592    .8599297
                  |
             LVix |
              L1. |   .0537966    .047911     1.12   0.267    -.0423007    .1498939
                  |
    LGlobalEPUPPP |
              L1. |  -.0659986   .0510523    -1.29   0.202    -.1683965    .0363994
    --------------+----------------------------------------------------------------
    SR            |
             mgsv |
              LD. |   .1521405   .1463569     1.04   0.303    -.1414143    .4456953
             L2D. |   .0566878   .0886861     0.64   0.525    -.1211941    .2345696
                  |
              rmp |
              D1. |  -.1423269   .1090739    -1.30   0.198    -.3611013    .0764476
              LD. |   .1216298   .1126371     1.08   0.285    -.1042916    .3475512
                  |
               nc |
              D1. |   .6104873   .2715063     2.25   0.029     .0659147     1.15506
              LD. |  -.0225563   .2432914    -0.09   0.926    -.5105371    .4654245
                  |
              itv |
              D1. |    .306998    .070086     4.38   0.000     .1664233    .4475726
                  |
             xgsv |
              D1. |   .6816911   .1130562     6.03   0.000     .4549291    .9084532
              LD. |  -.1829763   .1634703    -1.12   0.268    -.5108563    .1449037
                  |
             LVix |
              D1. |  -.0070046    .028669    -0.24   0.808    -.0645074    .0504982
              LD. |  -.0211439   .0269239    -0.79   0.436    -.0751465    .0328586
                  |
    LGlobalEPUPPP |
              D1. |  -.0101336   .0305751    -0.33   0.742    -.0714595    .0511924
              LD. |  -.0088528   .0298187    -0.30   0.768    -.0686616     .050956
                  |
            _cons |  -.8602113   .3521431    -2.44   0.018    -1.566521   -.1539016
    -------------------------------------------------------------------------------
    In this case the problem is not present and the adjustment coeffcient correctly lies between 0 and -1.

    I tried to run a similar regression, i.e. with the same explanatory variables, for other two countries and the issue does not appear.

    I am wondering what could be the cause leading to the first result.

    Many many thanks.

    Marco

    Leave a comment:


  • Sebastian Kripfganz
    replied
    It depends on the purpose of your analysis.

    If you want to test for the existence of a long-run relationship with the bounds test (estat btest), it is crucial to avoid autocorrelation. Newey-West standard errors are not of help for this test. To be on the safe side, you could overwrite the "optimal" lag order by choosing higher lag orders with the lags() option. You could also increase the maximum lag order with maxlags() and see if the AIC picks a higher lag order.

    On the other side, for prediction purposes you would usually prefer a more parsimonious model as this gives you a smaller root mean squared error (at the potential cost of a slightly larger bias).

    Leave a comment:


  • Jonathan Hillgren
    replied
    Hi Sebastian Kripfganz and thanks alot for all your help. We have one final question, How does it work if we have autocorrelation in the residuals, we regressed the model given to us by ARDL, AIC that determined our lags and then did the bgodfrey test with one more lag "estat bgodfrey, lags(5) and encountered autocorrelation. Should we use Newey West standard errors? or is the modell based on AIC giving correct estimates?

    Leave a comment:

Working...
X