-
Login or Register
- Log in with
. ardl mgsv rmp nc itv xgsv LVix if ifscode==941, ec1 lags(1 3 0 4 0 3) regstore(ardl2) ARDL regression Model: ec Sample: 1996q1 - 2015q4 Number of obs = 80 Log likelihood = 174.74148 R-squared = .79215454 Adj R-squared = .73936839 Root MSE = .03069176 ------------------------------------------------------------------------------ D.mgsv | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- ADJ | mgsv | L1. | -.4433418 .0896522 -4.95 0.000 -.6224974 -.2641863 -------------+---------------------------------------------------------------- LR | rmp | L1. | -1.052398 .4343518 -2.42 0.018 -1.920381 -.1844149 | nc | L1. | 1.3357 .2414046 5.53 0.000 .8532912 1.818108 | itv | L1. | -.1411704 .1032663 -1.37 0.176 -.3475317 .0651909 | xgsv | L1. | .9868565 .2768151 3.57 0.001 .4336856 1.540027 | LVix | L1. | .0316129 .0463461 0.68 0.498 -.0610025 .1242283 -------------+---------------------------------------------------------------- SR | rmp | D1. | -.6759413 .2137826 -3.16 0.002 -1.103152 -.2487309 LD. | .1832689 .1789283 1.02 0.310 -.1742908 .5408286 L2D. | .418125 .1975192 2.12 0.038 .0234144 .8128357 | nc | D1. | .5921716 .1287776 4.60 0.000 .3348301 .8495131 | itv | D1. | .2427257 .0502375 4.83 0.000 .1423341 .3431173 LD. | .1387496 .0494968 2.80 0.007 .0398381 .2376612 L2D. | .069666 .049202 1.42 0.162 -.0286565 .1679884 L3D. | .0835589 .0447848 1.87 0.067 -.0059364 .1730542 | xgsv | D1. | .4375148 .0837006 5.23 0.000 .2702524 .6047771 | LVix | D1. | .001864 .0181743 0.10 0.919 -.0344544 .0381824 LD. | -.0593211 .0213976 -2.77 0.007 -.1020808 -.0165614 L2D. | -.0541236 .0190216 -2.85 0.006 -.0921353 -.0161119 | _cons | -1.954917 .3880763 -5.04 0.000 -2.730425 -1.179408 ------------------------------------------------------------------------------ . end of do-file
. egranger mgsv rmp nc itv xgsv if ifscode==941 Replacing variable _egresid... Engle-Granger test for cointegration N (1st step) = 84 N (test) = 83 ------------------------------------------------------------------------------ Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value ------------------------------------------------------------------------------ Z(t) -3.890 -5.228 -4.586 -4.262 Critical values from MacKinnon (1990, 2010)
. egranger mgsv rmp nc itv xgsv if ifscode==941, regress Replacing variable _egresid... Engle-Granger test for cointegration N (1st step) = 84 N (test) = 83 ------------------------------------------------------------------------------ Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value ------------------------------------------------------------------------------ Z(t) -3.890 -5.228 -4.586 -4.262 Critical values from MacKinnon (1990, 2010) ------------------------------------------------------------------------------ Engle-Granger 1st-step regression ------------------------------------------------------------------------------ mgsv | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- rmp | -.4261249 .1679457 -2.54 0.013 -.7604125 -.0918372 nc | .7540739 .1180109 6.39 0.000 .5191791 .9889686 itv | .1368718 .0415571 3.29 0.001 .0541545 .2195891 xgsv | .6422247 .1119674 5.74 0.000 .4193591 .8650903 _cons | -1.993745 .4072917 -4.90 0.000 -2.804439 -1.183051 ------------------------------------------------------------------------------ Engle-Granger test regression ------------------------------------------------------------------------------ D._egresid | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- _egresid | L1. | -.3157309 .0811657 -3.89 0.000 -.4771953 -.1542664 ------------------------------------------------------------------------------ . end of do-file
. webuse lutkepohl2 . ardl ln_inv ln_inc ln_consump, regstore(ardl_bic) ARDL regression Model: level Sample: 1961q1 - 1982q4 Number of obs = 88 Log likelihood = 158.83176 R-squared = .9918295 Adj R-squared = .9913313 Root MSE = .04123219 ------------------------------------------------------------------------------ ln_inv | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- ln_inv | L1. | .8432219 .0588646 14.32 0.000 .7261214 .9603224 | ln_inc | -.4477328 .3143463 -1.42 0.158 -1.073068 .1776022 | ln_consump | --. | 1.9247 .5487929 3.51 0.001 .8329761 3.016424 L1. | -.3682414 .5622263 -0.65 0.514 -1.486689 .7502058 L2. | -.9598887 .4300221 -2.23 0.028 -1.81534 -.1044377 | _cons | -.0460065 .0706528 -0.65 0.517 -.1865575 .0945445 ------------------------------------------------------------------------------ . estimates restore ardl_bic (results ardl_bic are active now) . estat durbinalt Durbin's alternative test for autocorrelation --------------------------------------------------------------------------- lags(p) | chi2 df Prob > chi2 -------------+------------------------------------------------------------- 1 | 3.730 1 0.0534 --------------------------------------------------------------------------- H0: no serial correlation . estat bgodfrey Breusch-Godfrey LM test for autocorrelation --------------------------------------------------------------------------- lags(p) | chi2 df Prob > chi2 -------------+------------------------------------------------------------- 1 | 3.874 1 0.0490 --------------------------------------------------------------------------- H0: no serial correlation
. ardl ln_inv ln_inc ln_consump, regstore(ardl_aic) aic ARDL regression Model: level Sample: 1961q1 - 1982q4 Number of obs = 88 Log likelihood = 163.42433 R-squared = .99263931 Adj R-squared = .99189393 Root MSE = .03987169 ------------------------------------------------------------------------------ ln_inv | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- ln_inv | L1. | .6361522 .1066167 5.97 0.000 .4239369 .8483674 L2. | .0544957 .1292958 0.42 0.675 -.2028612 .3118526 L3. | .1947748 .1074963 1.81 0.074 -.0191911 .4087407 | ln_inc | -.7132999 .3172674 -2.25 0.027 -1.344805 -.081795 | ln_consump | --. | 2.200332 .5534362 3.98 0.000 1.098745 3.301919 L1. | -.0080402 .5827281 -0.01 0.989 -1.167931 1.151851 L2. | -.4564319 .5622027 -0.81 0.419 -1.575468 .6626045 L3. | -.9016915 .4374505 -2.06 0.043 -1.772415 -.030968 | _cons | -.0867693 .0709145 -1.22 0.225 -.2279212 .0543825 ------------------------------------------------------------------------------ . estimates restore ardl_aic (results ardl_aic are active now) . estat durbinalt Durbin's alternative test for autocorrelation --------------------------------------------------------------------------- lags(p) | chi2 df Prob > chi2 -------------+------------------------------------------------------------- 1 | 0.021 1 0.8840 --------------------------------------------------------------------------- H0: no serial correlation . estat bgodfrey Breusch-Godfrey LM test for autocorrelation --------------------------------------------------------------------------- lags(p) | chi2 df Prob > chi2 -------------+------------------------------------------------------------- 1 | 0.024 1 0.8769 --------------------------------------------------------------------------- H0: no serial correlation
. ardl ln_inv ln_inc ln_consump, lags(3 0 3) ec1 ARDL regression Model: ec Sample: 1960q4 - 1982q4 Number of obs = 89 Log likelihood = 165.33303 R-squared = .29433631 Adj R-squared = .22376994 Root MSE = .0398231 ------------------------------------------------------------------------------ D.ln_inv | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- ADJ | ln_inv | L1. | -.1104725 .0610698 -1.81 0.074 -.2320052 .0110601 -------------+---------------------------------------------------------------- LR | ln_inc | L1. | -6.032112 5.026647 -1.20 0.234 -16.03546 3.971234 | ln_consump | L1. | 7.090765 5.183768 1.37 0.175 -3.225261 17.40679 -------------+---------------------------------------------------------------- SR | ln_inv | LD. | -.2491467 .1081415 -2.30 0.024 -.4643551 -.0339383 L2D. | -.1870067 .1070165 -1.75 0.084 -.3999763 .0259629 | ln_inc | D1. | -.6663827 .3125476 -2.13 0.036 -1.288372 -.0443931 | ln_consump | D1. | 2.093388 .5397916 3.88 0.000 1.019169 3.167608 LD. | 1.300412 .4360514 2.98 0.004 .4326424 2.168182 L2D. | .9061069 .4368897 2.07 0.041 .0366686 1.775545 | _cons | -.0896716 .0707544 -1.27 0.209 -.2304773 .0511341 ------------------------------------------------------------------------------ . estat btest Pesaran/Shin/Smith (2001) ARDL Bounds Test H0: no levels relationship F = 3.873 t = -1.809 Critical Values (0.1-0.01), F-statistic, Case 3 | [I_0] [I_1] | [I_0] [I_1] | [I_0] [I_1] | [I_0] [I_1] | L_1 L_1 | L_05 L_05 | L_025 L_025 | L_01 L_01 ------+----------------+----------------+----------------+--------------- k_2 | 3.17 4.14 | 3.79 4.85 | 4.41 5.52 | 5.15 6.36 accept if F < critical value for I(0) regressors reject if F > critical value for I(1) regressors Critical Values (0.1-0.01), t-statistic, Case 3 | [I_0] [I_1] | [I_0] [I_1] | [I_0] [I_1] | [I_0] [I_1] | L_1 L_1 | L_05 L_05 | L_025 L_025 | L_01 L_01 ------+----------------+----------------+----------------+--------------- k_2 | -2.57 -3.21 | -2.86 -3.53 | -3.13 -3.80 | -3.43 -4.10 accept if t > critical value for I(0) regressors reject if t < critical value for I(1) regressors k: # of non-deterministic regressors in long-run relationship Critical values from Pesaran/Shin/Smith (2001) . estat btest, n Pesaran/Shin/Smith (2001) ARDL Bounds Test H0: no levels relationship F = 3.873 Critical Values (0.1-0.01), F-statistic, Case 3 | [I_0] [I_1] | [I_0] [I_1] | [I_0] [I_1] | L_1 L_1 | L_05 L_05 | L_01 L_01 ------+----------------+----------------+--------------- k_2 | 3.26 4.25 | 3.94 5.04 | 5.41 6.78 accept if F < critical value for I(0) regressors reject if F > critical value for I(1) regressors k: # of non-deterministic regressors in long-run relationship Critical values from Narayan (2005), N=80
ardl mgsv rmp nc itv xgsv LVix LGlobalEPUPPP if ifscode==946, maxlags(7) aic maxcombs(2000000) dots fast matrix list e(lags)
ardl mgsv rmp nc itv xgsv LVix LGlobalEPUPPP if ifscode==946, ec1 lags(6 7 6 0 7 7 7) regstore(ardl5)
. ardl mgsv rmp nc itv xgsv LVix LGlobalEPUPPP if ifscode==946, ec1 lags(6 7 6 0 7 7 7) regstore(ardl5) ARDL regression Model: ec Sample: 1998q4 - 2015q4 Number of obs = 69 Log likelihood = 207.7786 R-squared = .95588501 Adj R-squared = .86364457 Root MSE = .02109561 ------------------------------------------------------------------------------- D.mgsv | Coef. Std. Err. t P>|t| [95% Conf. Interval] --------------+---------------------------------------------------------------- ADJ | mgsv | L1. | .0011824 .3684211 0.00 0.997 -.7628762 .765241 --------------+---------------------------------------------------------------- LR | rmp | L1. | -117.3742 36536.76 -0.00 0.997 -75889.97 75655.22 | nc | L1. | 452.768 140809.5 0.00 0.997 -291568.3 292473.8 | itv | L1. | -309.3532 96365.31 -0.00 0.997 -200158.8 199540.1 | xgsv | L1. | -92.96919 29150.9 -0.00 0.997 -60548.23 60362.29 | LVix | L1. | -111.0917 34574.54 -0.00 0.997 -71814.3 71592.11 | LGlobalEPUPPP | L1. | 196.7787 61272.01 0.00 0.997 -126873.6 127267.1 --------------+---------------------------------------------------------------- SR | mgsv | LD. | -.7698193 .4133583 -1.86 0.076 -1.627072 .0874333 L2D. | -.6011546 .3336204 -1.80 0.085 -1.293041 .0907316 L3D. | -.4666905 .2788486 -1.67 0.108 -1.044987 .1116061 L4D. | -.1707356 .2243865 -0.76 0.455 -.6360848 .2946135 L5D. | .2738664 .1452609 1.89 0.073 -.0273864 .5751192 | rmp | D1. | -.4977635 .1471148 -3.38 0.003 -.8028609 -.192666 LD. | -.3390906 .237754 -1.43 0.168 -.8321622 .153981 L2D. | -.6463966 .2260095 -2.86 0.009 -1.115112 -.1776816 L3D. | -.5194799 .2229064 -2.33 0.029 -.9817594 -.0572003 L4D. | -.6262338 .2044137 -3.06 0.006 -1.050162 -.2023057 L5D. | -.5097497 .1873629 -2.72 0.012 -.8983166 -.1211828 L6D. | -.2131168 .1856316 -1.15 0.263 -.5980932 .1718595 | nc | D1. | -.1878331 .3366906 -0.56 0.583 -.8860866 .5104204 LD. | .2164175 .3163145 0.68 0.501 -.4395786 .8724135 L2D. | .2843947 .3660218 0.78 0.445 -.4746881 1.043477 L3D. | .6038347 .3562524 1.69 0.104 -.1349876 1.342657 L4D. | .2999871 .338704 0.89 0.385 -.4024421 1.002416 L5D. | -.5897248 .278342 -2.12 0.046 -1.166971 -.0124789 | itv | D1. | .3657799 .1022349 3.58 0.002 .1537577 .5778022 | xgsv | D1. | .8381486 .1627303 5.15 0.000 .5006665 1.175631 LD. | .5862168 .4027664 1.46 0.160 -.2490695 1.421503 L2D. | .8408149 .3208903 2.62 0.016 .1753292 1.506301 L3D. | .4102869 .2401392 1.71 0.102 -.0877314 .9083051 L4D. | -.1290902 .2492349 -0.52 0.610 -.6459717 .3877914 L5D. | -.28598 .1775715 -1.61 0.122 -.6542407 .0822807 L6D. | .3315378 .1827353 1.81 0.083 -.047432 .7105076 | LVix | D1. | -.1122472 .043141 -2.60 0.016 -.2017162 -.0227782 LD. | -.2618214 .0884512 -2.96 0.007 -.4452579 -.0783849 L2D. | -.288866 .0914218 -3.16 0.005 -.4784632 -.0992689 L3D. | -.2192862 .0805578 -2.72 0.012 -.3863529 -.0522195 L4D. | -.1940336 .0660847 -2.94 0.008 -.3310849 -.0569823 L5D. | -.1066013 .0429121 -2.48 0.021 -.1955955 -.0176071 L6D. | -.0592069 .0313052 -1.89 0.072 -.12413 .0057161 | LGlobalEPUPPP | D1. | .0342402 .035667 0.96 0.347 -.0397286 .1082089 LD. | .2170323 .0686799 3.16 0.005 .074599 .3594655 L2D. | .2440361 .067782 3.60 0.002 .1034649 .3846073 L3D. | .1735577 .0548971 3.16 0.005 .059708 .2874074 L4D. | .162349 .0461701 3.52 0.002 .0665981 .2580999 L5D. | .0919748 .0319221 2.88 0.009 .0257723 .1581772 L6D. | .057422 .0292392 1.96 0.062 -.0032164 .1180603 | _cons | .776483 .8081197 0.96 0.347 -.8994546 2.452421 -------------------------------------------------------------------------------
ardl mgsv rmp nc itv xgsv LVix LGlobalEPUPPP if ifscode==946, ec1 lags(3 2 2 1 2 2 2) regstore(ardl5)
. ardl mgsv rmp nc itv xgsv LVix LGlobalEPUPPP if ifscode==946, ec1 lags(3 2 2 1 2 2 2) regstore(ardl5) ARDL regression Model: ec Sample: 1997q3 - 2015q4 Number of obs = 74 Log likelihood = 174.94337 R-squared = .83380359 Adj R-squared = .77108797 Root MSE = .02688595 ------------------------------------------------------------------------------- D.mgsv | Coef. Std. Err. t P>|t| [95% Conf. Interval] --------------+---------------------------------------------------------------- ADJ | mgsv | L1. | -.6339296 .1788977 -3.54 0.001 -.992753 -.2751062 --------------+---------------------------------------------------------------- LR | rmp | L1. | .0134759 .0908202 0.15 0.883 -.1686863 .1956381 | nc | L1. | .3847702 .2116265 1.82 0.075 -.0396989 .8092393 | itv | L1. | .2217854 .0904437 2.45 0.018 .0403784 .4031925 | xgsv | L1. | .7106944 .0744039 9.55 0.000 .5614592 .8599297 | LVix | L1. | .0537966 .047911 1.12 0.267 -.0423007 .1498939 | LGlobalEPUPPP | L1. | -.0659986 .0510523 -1.29 0.202 -.1683965 .0363994 --------------+---------------------------------------------------------------- SR | mgsv | LD. | .1521405 .1463569 1.04 0.303 -.1414143 .4456953 L2D. | .0566878 .0886861 0.64 0.525 -.1211941 .2345696 | rmp | D1. | -.1423269 .1090739 -1.30 0.198 -.3611013 .0764476 LD. | .1216298 .1126371 1.08 0.285 -.1042916 .3475512 | nc | D1. | .6104873 .2715063 2.25 0.029 .0659147 1.15506 LD. | -.0225563 .2432914 -0.09 0.926 -.5105371 .4654245 | itv | D1. | .306998 .070086 4.38 0.000 .1664233 .4475726 | xgsv | D1. | .6816911 .1130562 6.03 0.000 .4549291 .9084532 LD. | -.1829763 .1634703 -1.12 0.268 -.5108563 .1449037 | LVix | D1. | -.0070046 .028669 -0.24 0.808 -.0645074 .0504982 LD. | -.0211439 .0269239 -0.79 0.436 -.0751465 .0328586 | LGlobalEPUPPP | D1. | -.0101336 .0305751 -0.33 0.742 -.0714595 .0511924 LD. | -.0088528 .0298187 -0.30 0.768 -.0686616 .050956 | _cons | -.8602113 .3521431 -2.44 0.018 -1.566521 -.1539016 -------------------------------------------------------------------------------
Leave a comment: