.
-
Login or Register
- Log in with
tabstat bwt if smoke==1, by(agecat) s(n mean sd) tabstat bwt if smoke==0, by(agecat) s(n mean sd)
tabstat lnPeakAST if ArmRandomised==1, by(Donor_Type) s(n mean sd) tabstat lnPeakAST if ArmRandomised==0, by(Donor_Type) s(n mean sd)
. mepoisson CSMI rand_grpx if EN_CENTRE_ID==1 || EN_CENTRE_ID:, vce(robust) irr . mepoisson CSMI rand_grpx if EN_CENTRE_ID==2 || EN_CENTRE_ID:, vce(robust) irr ...
use http://fmwww.bc.edu/repec/bocode/i/ipdmetan_example.dta, clear // First, fit the random-intercept model. // The model coefficients will be retained in memory until you next fit a regression ("e-class") model. ipdover will not change them. mepoisson fail trt || region:, vce(robust) // Next, use ipdover. Don't plot the graph yet; instead save the data in "forestplot format" (see help admetan or help forestplot) // Note there is no need to use mepoisson (as no random intercept); poisson will do // (you may want to add robust SEs though, that's up to you) ipdover, over(region) nogr saving(myfile) : poisson fail trt // Load the saved dataset and insert the coefficients from the random-intercept model // (for your own model, if you're not sure what the coefficient names are, type "mepoisson, coeflegend") // (note also that forestplot needs the **confidence limits**, not the standard error) use myfile, clear replace _ES = _b[trt] if _USE==5 replace _LCI = _b[trt] - invnorm(.975)*_se[trt] if _USE==5 replace _UCI = _b[trt] + invnorm(.975)*_se[trt] if _USE==5 replace _LABELS = _LABELS + " (random-intercept model)" if _USE==5 // Finally, create the plot forestplot, irr
Comment