Hello, I'm a stats lightweight and am having trouble interpreting the interaction term in the Cox model I've constructed. I've read previous posts regarding interaction terms in nonlinear models which have helped but I still can't quite tell if I'm interpreting my outputs correctly. Below is a Cox model with 3 terms - SNP (0, 1), treat (0, 1) and treat#SNP interaction term. From what I've read you can't directly interpret the interaction HR from the output so my question is how to determine the HR in individuals for whom SNP==1 and treat==1 compared to those for whom SNP==0 and treat==0. Thx much.
Cox regression -- Breslow method for ties
No. of subjects = 151 Number of obs = 151
No. of failures = 35
Time at risk = 7268.285718
LR chi2(6) = 20.33
Log likelihood = -156.00389 Prob > chi2 = 0.0024
---------------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
----------------+----------------------------------------------------------------
SNP | 1.319208 .5351759 0.68 0.495 .5956595 2.921652
|
treat |
1 | 1.459607 .7583516 0.73 0.467 .5272138 4.040966
|
treat#SNP |
1 | .1727357 .1479031 -2.05 0.040 .0322515 .9251545
|
---------------------------------------------------------------------------------
Cox regression -- Breslow method for ties
No. of subjects = 151 Number of obs = 151
No. of failures = 35
Time at risk = 7268.285718
LR chi2(6) = 20.33
Log likelihood = -156.00389 Prob > chi2 = 0.0024
---------------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
----------------+----------------------------------------------------------------
SNP | 1.319208 .5351759 0.68 0.495 .5956595 2.921652
|
treat |
1 | 1.459607 .7583516 0.73 0.467 .5272138 4.040966
|
treat#SNP |
1 | .1727357 .1479031 -2.05 0.040 .0322515 .9251545
|
---------------------------------------------------------------------------------
Comment