I am trying to calculate p-values for coefficients after an oprobit regression, using the directions in "Stata tip 53: Where did my p-values go?" (http://www.stata-journal.com/sjpdf.h...iclenum=st0137)
Here is the example:
. local t = _b[foreign]/_se[foreign]
. di 2*ttail(e(df_r),abs(`t ́)) However, when I do ereturn list, there is no df_r, only df_m (results of ereturn list shown below). I'm not sure what the difference is, but when I try to use df_m to calculate the p-values, I do not get the correct values.
Any advice on how to calculate the p-values would be much appreciated!
Thanks,
Susan
. ereturn list
scalars:
e(rank) = 42
e(N) = 220503
e(ic) = 3
e(k) = 42
e(k_eq) = 11
e(k_dv) = 1
e(converged) = 1
e(rc) = 0
e(ll) = -401494.4658840121
e(k_eq_model) = 1
e(ll_0) = -414969.3276823036
e(df_m) = 32
e(chi2) = 26949.723596583
e(p) = 0
e(N_cd) = 0
e(k_cat) = 11
e(k_aux) = 10
e(r2_p) = .0324719464774701
macros:
e(cmdline) : "oprobit ar_emp_LTR tenuremonths _Icycle_* _Izone_* _Ib.."
e(cmd) : "oprobit"
e(predict) : "oprobi_p"
e(title) : "Ordered probit regression"
e(chi2type) : "LR"
e(opt) : "moptimize"
e(vce) : "oim"
e(user) : "mopt__oprobit_d2()"
e(ml_method) : "d2"
e(technique) : "nr"
e(which) : "max"
e(depvar) : "ar_emp_LTR"
e(properties) : "b V"
matrices:
e(b) : 1 x 42
e(V) : 42 x 42
e(cat) : 1 x 11
e(ilog) : 1 x 20
e(gradient) : 1 x 42
functions:
e(sample)
Here is the example:
. local t = _b[foreign]/_se[foreign]
. di 2*ttail(e(df_r),abs(`t ́)) However, when I do ereturn list, there is no df_r, only df_m (results of ereturn list shown below). I'm not sure what the difference is, but when I try to use df_m to calculate the p-values, I do not get the correct values.
Any advice on how to calculate the p-values would be much appreciated!
Thanks,
Susan
. ereturn list
scalars:
e(rank) = 42
e(N) = 220503
e(ic) = 3
e(k) = 42
e(k_eq) = 11
e(k_dv) = 1
e(converged) = 1
e(rc) = 0
e(ll) = -401494.4658840121
e(k_eq_model) = 1
e(ll_0) = -414969.3276823036
e(df_m) = 32
e(chi2) = 26949.723596583
e(p) = 0
e(N_cd) = 0
e(k_cat) = 11
e(k_aux) = 10
e(r2_p) = .0324719464774701
macros:
e(cmdline) : "oprobit ar_emp_LTR tenuremonths _Icycle_* _Izone_* _Ib.."
e(cmd) : "oprobit"
e(predict) : "oprobi_p"
e(title) : "Ordered probit regression"
e(chi2type) : "LR"
e(opt) : "moptimize"
e(vce) : "oim"
e(user) : "mopt__oprobit_d2()"
e(ml_method) : "d2"
e(technique) : "nr"
e(which) : "max"
e(depvar) : "ar_emp_LTR"
e(properties) : "b V"
matrices:
e(b) : 1 x 42
e(V) : 42 x 42
e(cat) : 1 x 11
e(ilog) : 1 x 20
e(gradient) : 1 x 42
functions:
e(sample)
Comment