Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Omitted (time) dummy variables

    Hello all,

    While running a panel regression I am encountering a collinearity problem, but do not understand where the collinearity is coming from. My dataset is sufficiently large (>6000 ids).

    The problem pops up when I want to include time dummies; without time dummies there is no issue. For each year in my dataset I created a dummy. Due to the dummy trap one dummy is always omitted, but in my case in total 3 time dummies are omitted. I already checked whether there are observations which have a unit value for several year dummies or zeros for all years, which is clearly not the case. The observations are also quite evenly distributed over time.

    I understand that perhaps one or more of the time dummies can be written as a linear combination of the other regressors. But how can that be in case of time dummies?

    Many thanks in advance.

    BR
    Elisabeth

  • #2
    First of all, Elisabeth please register yourself with full name. We can help if we you share the correlation matrix and definitions of various variables. Some macro level variables closely covary with year dummies, these might be hidden culprits.

    Regards
    Attaullah Shah
    Regards
    --------------------------------------------------
    Attaullah Shah, PhD.
    Professor of Finance, Institute of Management Sciences Peshawar, Pakistan
    FinTechProfessor.com
    https://asdocx.com
    Check out my asdoc program, which sends outputs to MS Word.
    For more flexibility, consider using asdocx which can send Stata outputs to MS Word, Excel, LaTeX, or HTML.

    Comment


    • #3
      Hello Attaullah Shah,

      Thanks for your quick reply.

      I want to explain the long-term debt ratio. The regressors are firm characteristics (firm age (i.e. ln(age), size (ln(total assets), risk (st.dev of net earnings over the last 3 years), profitability (ebit/total assets), collateral (fixed assets/total assets) and growth (sales growth, measured relatively to previous year)); while the dependent 'LTschuld' represents LT debt scaled by total assets.
      The Pearson correlation matrix looks as follows:
      | LTschuld Leeftijd Ebit Groei Grootte Onderp~d Risico
      -------------+---------------------------------------------------------------
      LTschuld | 1.0000
      |
      |
      Leeftijd | 0.0011 1.0000
      | 0.8363
      |
      Ebit | -0.1020* -0.0277* 1.0000
      | 0.0000 0.0000
      |
      Groei | 0.0339* -0.0796* 0.1924* 1.0000
      | 0.0000 0.0000 0.0000
      |
      Grootte | 0.2175* 0.2017* -0.0046 0.0975* 1.0000
      | 0.0000 0.0000 0.3870 0.0000
      |
      Onderpand | 0.5107* 0.0416* -0.0881* 0.0166* 0.1226* 1.0000
      | 0.0000 0.0000 0.0000 0.0017 0.0000
      |
      Risico | -0.1126* -0.1236* -0.1397* -0.1177* -0.2949* -0.0939* 1.0000
      | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
      |
      So, collinearity between the continuous regressors is of no concern here.
      Performing pooled OLS gives the following (where y* stands for the time dummies and panel covers the period 2004-2010):

      regress LTschuld L.Leeftijd L.Ebit L.Groei L.Grootte L.Onderpand L.Risico y2005 ... y2010

      LTschuld | Coef. Std. Err. t P>|t| [95% Conf. Interval]
      -------------+----------------------------------------------------------------
      Leeftijd |
      L1. | -.0100332 .0012856 -7.80 0.000 -.012553 -.0075133
      |
      Ebit |
      L1. | -.0940291 .0071702 -13.11 0.000 -.1080832 -.079975
      |
      Groei |
      L1. | .0177338 .0047171 3.76 0.000 .0084879 .0269797
      |
      Grootte |
      L1. | .02193 .0008137 26.95 0.000 .020335 .023525
      |
      Onderpand |
      L1. | .3614957 .0046434 77.85 0.000 .3523943 .370597
      |
      Risico |
      L1. | -.0809053 .0156659 -5.16 0.000 -.1116115 -.0501991
      |
      y2005 | 0 (omitted)
      y2006 | 0 (omitted)
      y2007 | .0006116 .0027443 0.22 0.824 -.0047675 .0059907
      y2008 | .0025904 .0027309 0.95 0.343 -.0027623 .007943
      y2009 | -.0006751 .0027178 -0.25 0.804 -.0060022 .004652
      y2010 | -.0043153 .0027585 -1.56 0.118 -.0097221 .0010916
      _cons | -.3017464 .0154462 -19.54 0.000 -.332022 -.2714707

      Comment


      • #4
        As a general advice on posting results, please following the instruction in FAQs. For example, when typing the message, click on the underlined A on the upper right, then click #. Copy and paste your code and output between the two code tags. Since the year dummies are dropped, you should include them in the correlation analysis and see the results. Second, you should be less concerned about the year dummies as none of these seems to be significant. Even if they are significant, journals usually do not publish coefficients of these dummies. So do not worry if they are dropped by Stata.
        Regards
        --------------------------------------------------
        Attaullah Shah, PhD.
        Professor of Finance, Institute of Management Sciences Peshawar, Pakistan
        FinTechProfessor.com
        https://asdocx.com
        Check out my asdoc program, which sends outputs to MS Word.
        For more flexibility, consider using asdocx which can send Stata outputs to MS Word, Excel, LaTeX, or HTML.

        Comment


        • #5
          Elisabeth: Here is what I think is happening. First, you are lagging variables by using the "L" operator, so the data for your equation really starts in 2005, not 2004. That is why you are losing the 2005 dummy. I'm unsure about why y2006 is being dropped, but it may have to do with the log(age) variable. If you were including firm fixed effects then this would be the problem: Once you account for different firm ages in the first year, age -- which always increases by one -- is perfectly collinear with the year dummies. But usually a variable like age does not drop out when you don't have firm fixed effects.

          Try dropping y2005 to see what happens, and then maybe you can figure out why y2006 is dropped. JW

          Comment


          • #6
            Thanks for your helpful advice!
            I figured out why y2006 was dropped. One of my continuous regressors was missing for each panel for one particular year. Once I solved this, the model ran fine.

            Elisabeth

            Comment


            • #7
              Hi guys, I was wondering the same as Elisabeth above. If I run my panel data (2007-2013) regression with year and firm fixed effects 2 extra time dummies are dropped because of collinearity (see output below). I already dropped one time dummie myself to avoid dummy variable trap. Could one please have a look at why those years are also dropped from the regression output.

              I have also included a correlation matrix for you to check whether something is odd.

              If one needs explanation on the variables I am happy to provide upon request.

              Thanks in advance,

              Best,

              Roy Steinvoort



              Code:
               areg LnCEO_compensation  LnMarketcap BtM ROA ChangeInROA LagAnnualizedMonthlyReturn AgeCEO TenureCEO  NewCEO  
              > Boardsize CEOisChair  PercOutside PercBusy PercOld PercApptdAfterCEO YEAR*, a(gvkey) cluster(gvkey)
              note: YEAR7 omitted because of collinearity
              note: YEAR2 omitted because of collinearity
              
              Linear regression, absorbing indicators           Number of obs   =       6752
                                                                F(  18,   1638) =      19.98
                                                                Prob > F        =     0.0000
                                                                R-squared       =     0.8421
                                                                Adj R-squared   =     0.7908
                                                                Root MSE        =     0.4464
              
                                                           (Std. Err. adjusted for 1639 clusters in gvkey)
              --------------------------------------------------------------------------------------------
                                         |               Robust
                      LnCEO_compensation |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
              ---------------------------+----------------------------------------------------------------
                             LnMarketcap |   .0306365   .0084857     3.61   0.000     .0139924    .0472805
                                     BtM |  -.0028283   .0017949    -1.58   0.115    -.0063488    .0006921
                                     ROA |   .7570996   .2868026     2.64   0.008     .1945611    1.319638
                             ChangeInROA |   .8247792   .2488013     3.32   0.001      .336777    1.312781
              LagAnnualizedMonthlyReturn |   .0826548   .0167448     4.94   0.000     .0498114    .1154982
                                  AgeCEO |   .0030136   .0034373     0.88   0.381    -.0037284    .0097556
                               TenureCEO |   .0439201   .0189114     2.32   0.020     .0068271    .0810132
                                  NewCEO |  -.0019386   .0282041    -0.07   0.945    -.0572584    .0533812
                               Boardsize |  -.0073345   .0103377    -0.71   0.478    -.0276111    .0129421
                              CEOisChair |   .0534148   .0323341     1.65   0.099    -.0100058    .1168353
                             PercOutside |   .1392485   .1696608     0.82   0.412    -.1935264    .4720235
                                PercBusy |   .2141589   .0981868     2.18   0.029     .0215739    .4067438
                                 PercOld |    .126415   .0903798     1.40   0.162    -.0508572    .3036872
                       PercApptdAfterCEO |   .2963825   .1399405     2.12   0.034     .0219013    .5708637
                                   YEAR2 |          0  (omitted)
                                   YEAR3 |  -.0676431   .0278097    -2.43   0.015    -.1221894   -.0130969
                                   YEAR4 |   .0007112   .0392487     0.02   0.986    -.0762718    .0776941
                                   YEAR5 |   .0247186   .0552832     0.45   0.655    -.0837146    .1331518
                                   YEAR6 |     .00256   .0724646     0.04   0.972     -.139573     .144693
                                   YEAR7 |          0  (omitted)
                                   _cons |   7.289132    .275787    26.43   0.000       6.7482    7.830065
              ---------------------------+----------------------------------------------------------------
                                   gvkey |   absorbed                                    (1639 categories)
              Code:
                pwcorr LnCEO_compensation  LnMarketcap BtM ROA ChangeInROA LagAnnualizedMonthlyReturn AgeCEO TenureCEO  NewCEO
              >   Boardsize CEOisChair  PercOutside PercBusy PercOld PercApptdAfterCEO YEAR*
              
                           | LnCEO_~n LnMark~p      BtM      ROA Change~A LagAnn~n   AgeCEO
              -------------+---------------------------------------------------------------
              LnCEO_comp~n |   1.0000
               LnMarketcap |   0.5894   1.0000
                       BtM |  -0.0519  -0.1029   1.0000
                       ROA |   0.1028   0.1762  -0.1353   1.0000
               ChangeInROA |   0.0702   0.0604  -0.0279  -0.2806   1.0000
              LagAnnuali~n |   0.0991   0.0972  -0.0860   0.0886   0.2078   1.0000
                    AgeCEO |   0.0032   0.0036   0.0048  -0.0349   0.0020  -0.0155   1.0000
                 TenureCEO |  -0.0577  -0.0496  -0.0274  -0.0137   0.0053   0.0085   0.2010
                    NewCEO |   0.0009  -0.0047   0.0435  -0.0022  -0.0140  -0.0192   0.1019
                 Boardsize |   0.3145   0.3855   0.1006  -0.0633   0.0206  -0.0356   0.0153
                CEOisChair |   0.1349   0.1106   0.0024   0.0240   0.0022  -0.0302   0.2038
               PercOutside |   0.2542   0.1712   0.0116  -0.0207   0.0175  -0.0158  -0.0712
                  PercBusy |   0.3677   0.3415  -0.0280   0.0300   0.0067   0.0023  -0.0711
                   PercOld |  -0.0121   0.0104  -0.0022  -0.0246   0.0105  -0.0085   0.3094
              PercApptdA~O |  -0.0021  -0.0329  -0.0331  -0.0038   0.0078   0.0295   0.1191
                     YEAR2 |  -0.0466  -0.1203   0.0685   0.0275  -0.0717  -0.0771  -0.0600
                     YEAR3 |  -0.0738  -0.0509  -0.0055  -0.0088  -0.0971  -0.3762  -0.0509
                     YEAR4 |   0.0077   0.0063  -0.0216  -0.0706   0.1599   0.2665  -0.0189
                     YEAR5 |   0.0331  -0.0081  -0.0079   0.0201   0.0400   0.1177   0.0566
                     YEAR6 |   0.0390   0.0719   0.0171   0.0272  -0.0283  -0.1280   0.0761
                     YEAR7 |   0.0772   0.1073  -0.0364   0.0046  -0.0097   0.0429   0.0829
              
                           | Tenure~O   NewCEO Boards~e CEOisC~r PercOu~e PercBusy  PercOld
              -------------+---------------------------------------------------------------
                 TenureCEO |   1.0000
                    NewCEO |  -0.2020   1.0000
                 Boardsize |  -0.1142   0.0230   1.0000
                CEOisChair |   0.1861   0.0323   0.0714   1.0000
               PercOutside |  -0.1307   0.0219   0.1518   0.1298   1.0000
                  PercBusy |  -0.1667   0.0149   0.1855   0.0816   0.2875   1.0000
                   PercOld |   0.1502  -0.0114   0.0608  -0.0139  -0.1275  -0.0626   1.0000
              PercApptdA~O |   0.8260  -0.2310  -0.1025   0.1942  -0.0427  -0.1172   0.0173
                     YEAR2 |  -0.1061  -0.0101   0.0050   0.0722  -0.0282   0.0371  -0.0757
                     YEAR3 |  -0.0532  -0.0016  -0.0023   0.0656  -0.0356  -0.0002  -0.0500
                     YEAR4 |   0.0012   0.0243  -0.0007   0.0566   0.0039  -0.0152  -0.0069
                     YEAR5 |   0.0536   0.0411  -0.0047  -0.0457   0.0252  -0.0158   0.0413
                     YEAR6 |   0.1050   0.0605   0.0020  -0.0537   0.0344  -0.0324   0.0838
                     YEAR7 |   0.1568  -0.1132   0.0089  -0.0734   0.0491  -0.0196   0.1002
              
                           | PercAp~O    YEAR2    YEAR3    YEAR4    YEAR5    YEAR6    YEAR7
              -------------+---------------------------------------------------------------
              PercApptdA~O |   1.0000
                     YEAR2 |  -0.0879   1.0000
                     YEAR3 |  -0.0516  -0.1663   1.0000
                     YEAR4 |  -0.0190  -0.1670  -0.1674   1.0000
                     YEAR5 |   0.0456  -0.1669  -0.1673  -0.1680   1.0000
                     YEAR6 |   0.0872  -0.1673  -0.1677  -0.1684  -0.1683   1.0000
                     YEAR7 |   0.1377  -0.1681  -0.1685  -0.1691  -0.1691  -0.1695   1.0000

              Comment


              • #8
                Roy (the usual, seemingly pedantic, remark about re-registering according to the strong preference for real full names still holds. Thanks).
                - Stata automatically avoids the -dummy trap- if you go i.year in -long- format with a pooled OLS (just out of curiosity: why don't you simply rely upon the capabilities of the wide suite of -xt- built-in Stata commands explicitly conceived for dealing with panel datasets?);
                - why did you invoke -pwcorr- instead of -estat vce, corr- after -areg- to investigate multicollinearity?
                Kind regards,
                Carlo
                (StataNow 18.5)

                Comment


                • #9
                  I can't give a specific answer because I don't know what the variables in your model are. But most likely it is a variant of this:

                  Code:
                  . webuse grunfeld, clear
                  
                  . xtset
                         panel variable:  company (strongly balanced)
                          time variable:  year, 1935 to 1954
                                  delta:  1 year
                  
                  . xtreg mvalue invest i.year, fe
                  
                  Fixed-effects (within) regression               Number of obs     =        200
                  Group variable: company                         Number of groups  =         10
                  
                  R-sq:                                           Obs per group:
                       within  = 0.5383                                         min =         20
                       between = 0.8572                                         avg =       20.0
                       overall = 0.6801                                         max =         20
                  
                                                                  F(20,170)         =       9.91
                  corr(u_i, Xb)  = 0.6904                         Prob > F          =     0.0000
                  
                  ------------------------------------------------------------------------------
                        mvalue |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                  -------------+----------------------------------------------------------------
                        invest |   1.717841   .1969516     8.72   0.000     1.329056    2.106627
                               |
                          year |
                         1936  |   322.5244   112.1003     2.88   0.005     101.2364    543.8124
                         1937  |   559.3822   112.3838     4.98   0.000     337.5346    781.2298
                         1938  |   131.4099   111.9601     1.17   0.242    -89.60131    352.4211
                         1939  |   359.4182   111.9666     3.21   0.002     138.3942    580.4422
                         1940  |   356.9408   112.2402     3.18   0.002     135.3767    578.5048
                         1941  |    265.428   112.7305     2.35   0.020     42.89614    487.9599
                         1942  |   87.62209    112.387     0.78   0.437    -134.2317    309.4759
                         1943  |   210.3145   112.3071     1.87   0.063    -11.38151    432.0106
                         1944  |   237.5371   112.3575     2.11   0.036     15.74143    459.3328
                         1945  |   344.3146   112.4131     3.06   0.003     122.4092      566.22
                         1946  |   344.2699   113.3083     3.04   0.003     120.5975    567.9423
                         1947  |   92.03748   112.9107     0.82   0.416    -130.8502    314.9251
                         1948  |   50.01684   113.0927     0.44   0.659      -173.23    273.2636
                         1949  |   95.84998   112.7196     0.85   0.396    -126.6604    318.3603
                         1950  |   135.0513   113.0137     1.19   0.234    -88.03958    358.1421
                         1951  |   282.7271   114.7093     2.46   0.015     56.28914    509.1651
                         1952  |   287.0239   115.8533     2.48   0.014      58.3275    515.7203
                         1953  |   421.8682   118.8701     3.55   0.001     187.2166    656.5198
                         1954  |   385.1248   118.7513     3.24   0.001     150.7077    619.5418
                               |
                         _cons |   582.5049   80.45101     7.24   0.000     423.6933    741.3165
                  -------------+----------------------------------------------------------------
                       sigma_u |  1026.8384
                       sigma_e |  250.34154
                           rho |  .94389698   (fraction of variance due to u_i)
                  ------------------------------------------------------------------------------
                  F test that all u_i=0: F(9, 170) = 128.45                    Prob > F = 0.0000
                  
                  . gen byte early = (year < 1944)
                  
                  . xtreg mvalue invest i.early i.year, fe
                  note: 1954.year omitted because of collinearity
                  
                  Fixed-effects (within) regression               Number of obs     =        200
                  Group variable: company                         Number of groups  =         10
                  
                  R-sq:                                           Obs per group:
                       within  = 0.5383                                         min =         20
                       between = 0.8572                                         avg =       20.0
                       overall = 0.6801                                         max =         20
                  
                                                                  F(20,170)         =       9.91
                  corr(u_i, Xb)  = 0.6904                         Prob > F          =     0.0000
                  
                  ------------------------------------------------------------------------------
                        mvalue |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                  -------------+----------------------------------------------------------------
                        invest |   1.717841   .1969516     8.72   0.000     1.329056    2.106627
                       1.early |  -385.1248   118.7513    -3.24   0.001    -619.5418   -150.7077
                               |
                          year |
                         1936  |   322.5244   112.1003     2.88   0.005     101.2364    543.8124
                         1937  |   559.3822   112.3838     4.98   0.000     337.5346    781.2298
                         1938  |   131.4099   111.9601     1.17   0.242    -89.60131    352.4211
                         1939  |   359.4182   111.9666     3.21   0.002     138.3942    580.4422
                         1940  |   356.9408   112.2402     3.18   0.002     135.3767    578.5048
                         1941  |    265.428   112.7305     2.35   0.020     42.89614    487.9599
                         1942  |   87.62209    112.387     0.78   0.437    -134.2317    309.4759
                         1943  |   210.3145   112.3071     1.87   0.063    -11.38151    432.0106
                         1944  |  -147.5877   115.9332    -1.27   0.205    -376.4417    81.26637
                         1945  |  -40.81016   115.7694    -0.35   0.725    -269.3409    187.7206
                         1946  |  -40.85485   114.1246    -0.36   0.721    -266.1388    184.4291
                         1947  |  -293.0873   114.7011    -2.56   0.011    -519.5091   -66.66544
                         1948  |  -335.1079   114.4168    -2.93   0.004    -560.9685   -109.2473
                         1949  |  -289.2748    115.049    -2.51   0.013    -516.3835   -62.16604
                         1950  |  -250.0735   114.5354    -2.18   0.030    -476.1683   -23.97868
                         1951  |  -102.3976   112.9058    -0.91   0.366    -325.2756    120.4804
                         1952  |  -98.10087   112.3841    -0.87   0.384    -319.9489    123.7471
                         1953  |   36.74347   111.9567     0.33   0.743    -184.2609    257.7479
                         1954  |          0  (omitted)
                               |
                         _cons |   967.6297   95.78427    10.10   0.000     778.5499    1156.709
                  -------------+----------------------------------------------------------------
                       sigma_u |  1026.8384
                       sigma_e |  250.34154
                           rho |  .94389698   (fraction of variance due to u_i)
                  ------------------------------------------------------------------------------
                  F test that all u_i=0: F(9, 170) = 128.45                    Prob > F = 0.0000
                  Notice that when we add a new variable that is defined in terms of the year variable, we lose one year to multicollinearity. My guess is that two of your other variables work in a way similar to this, and that is the cause.

                  By the way, you will make your life easier going forward if you use factor variable notation (-help fvvarlist-), as I have done, instead of creating your own indicator variables. Not only will you need to do less typing to set up your models, you will then be able to use the versatile -margins- commands to get predicted values and marginal effects after.

                  Finally, please click on "CONTACT US" in the lower right corner of your screen and request the system administrators to change your user id on this site to Roy Steinvoort. In this community it is the norm to use real names as user ids. Thank you.

                  Comment


                  • #10
                    Carlo and Clyde, thank you for your responses. Unfortunately I am not much wiser now.

                    To maybe give you a clearer idea of what is going on I have tried the tips you provided. I think it might have something to do with the specification of the variable "CEO tenure".

                    Code:
                    . tab fyear
                    
                          fyear |      Freq.     Percent        Cum.
                    ------------+-----------------------------------
                           2007 |      1,226       12.69       12.69
                           2008 |      1,356       14.04       26.73
                           2009 |      1,415       14.65       41.39
                           2010 |      1,437       14.88       56.26
                           2011 |      1,438       14.89       71.15
                           2012 |      1,416       14.66       85.81
                           2013 |      1,370       14.19      100.00
                    ------------+-----------------------------------
                          Total |      9,658      100.00
                    
                    . xtset gvkey fyear, year
                           panel variable:  gvkey (unbalanced)
                            time variable:  fyear, 2007 to 2013, but with gaps
                                    delta:  1 year
                    
                    . xtreg LnCEO_compensation  LnMarketcap BtM ROA ChangeInROA LagAnnualizedMonthlyReturn AgeCEO TenureCEO  NewCEO
                    >  Boardsize CEOisChair  PercOutside PercBusy PercOld PercApptdAfterCEO i.fyear, fe cluster(gvkey)
                    note: 2013.fyear omitted because of collinearity
                    
                    Fixed-effects (within) regression               Number of obs      =      6669
                    Group variable: gvkey                           Number of groups   =      1558
                    
                    R-sq:  within  = 0.1039                         Obs per group: min =         1
                           between = 0.0031                                        avg =       4.3
                           overall = 0.0078                                        max =         6
                    
                                                                    F(18,1557)         =     26.44
                    corr(u_i, Xb)  = -0.3723                        Prob > F           =    0.0000
                    
                                                                 (Std. Err. adjusted for 1558 clusters in gvkey)
                    --------------------------------------------------------------------------------------------
                                               |               Robust
                            LnCEO_compensation |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                    ---------------------------+----------------------------------------------------------------
                                   LnMarketcap |    .030474   .0073589     4.14   0.000     .0160397    .0449084
                                           BtM |  -.0028329   .0015627    -1.81   0.070    -.0058981    .0002323
                                           ROA |   .7570686   .2496137     3.03   0.002     .2674542    1.246683
                                   ChangeInROA |    .824451   .2160089     3.82   0.000      .400752     1.24815
                    LagAnnualizedMonthlyReturn |    .083084   .0146168     5.68   0.000     .0544133    .1117547
                                        AgeCEO |   .0030077   .0029908     1.01   0.315    -.0028587     .008874
                                     TenureCEO |   .0437457   .0164498     2.66   0.008     .0114796    .0760117
                                        NewCEO |  -.0012613   .0245529    -0.05   0.959    -.0494216    .0468989
                                     Boardsize |  -.0074259    .008995    -0.83   0.409    -.0250696    .0102177
                                    CEOisChair |   .0533571   .0281486     1.90   0.058    -.0018561    .1085703
                                   PercOutside |   .1401098   .1475574     0.95   0.342    -.1493223    .4295419
                                      PercBusy |   .2158994   .0854419     2.53   0.012     .0483061    .3834927
                                       PercOld |   .1261479   .0786555     1.60   0.109     -.028134    .2804298
                             PercApptdAfterCEO |   .2980932   .1218312     2.45   0.015     .0591226    .5370638
                                               |
                                         fyear |
                                         2009  |  -.0680739   .0241446    -2.82   0.005    -.1154332   -.0207146
                                         2010  |   .0001542   .0341648     0.00   0.996    -.0668596     .067168
                                         2011  |   .0254965   .0480934     0.53   0.596    -.0688381    .1198312
                                         2012  |   .0021286   .0630334     0.03   0.973    -.1215106    .1257678
                                         2013  |          0  (omitted)
                                               |
                                         _cons |   7.294346   .2400827    30.38   0.000     6.823426    7.765265
                    ---------------------------+----------------------------------------------------------------
                                       sigma_u |   .9705203
                                       sigma_e |  .44649751
                                           rho |  .82531733   (fraction of variance due to u_i)
                    --------------------------------------------------------------------------------------------
                    
                    . estat vce, corr
                    
                    Correlation matrix of coefficients of xtreg model
                    
                                 |                                                                                          
                            e(V) | LnMark~p       BtM       ROA  Change~A  LagAnn~n    AgeCEO  Tenure~O    NewCEO  Boards~e
                    -------------+------------------------------------------------------------------------------------------
                     LnMarketcap |   1.0000                                                                                 
                             BtM |   0.1675    1.0000                                                                       
                             ROA |  -0.0393   -0.0090    1.0000                                                             
                     ChangeInROA |  -0.0663    0.0502    0.8017    1.0000                                                   
                    LagAnnuali~n |  -0.0754   -0.0627   -0.2128   -0.2493    1.0000                                         
                          AgeCEO |   0.0656    0.0415    0.0059   -0.0208   -0.0482    1.0000                               
                       TenureCEO |  -0.0003    0.0491    0.0278    0.0535   -0.0130   -0.0315    1.0000                     
                          NewCEO |   0.0607   -0.0787   -0.0264   -0.0055    0.0584   -0.0616    0.0087    1.0000           
                       Boardsize |   0.0385   -0.1871    0.0421    0.0367    0.0221    0.0169    0.1233    0.1452    1.0000
                      CEOisChair |   0.0739    0.1353    0.0017    0.0454   -0.0920    0.1109    0.0991   -0.0373    0.0928
                     PercOutside |   0.0527   -0.0317   -0.0140    0.0086   -0.0222    0.0703   -0.0089    0.0406    0.0131
                        PercBusy |   0.1004    0.0928   -0.1051   -0.0959    0.1031    0.0478    0.1058    0.0301    0.0962
                         PercOld |   0.0062    0.0021    0.0667    0.0073   -0.0196    0.0674   -0.1271    0.0224   -0.1894
                    PercApptdA~O |  -0.1228   -0.2050   -0.0567   -0.0623    0.1251   -0.3415   -0.2260    0.0353   -0.2014
                      2009.fyear |  -0.0247   -0.0140    0.0937    0.0901    0.2834   -0.0202   -0.5175    0.0602    0.0839
                      2010.fyear |  -0.0699   -0.0399    0.0963    0.0344   -0.0672   -0.0467   -0.8085   -0.0512   -0.0205
                      2011.fyear |  -0.0374   -0.0264    0.0124   -0.0149   -0.0395   -0.0772   -0.8836   -0.0494   -0.0233
                      2012.fyear |  -0.0664   -0.0321    0.0045   -0.0095    0.0332   -0.0874   -0.9024   -0.0390   -0.0389
                     2013o.fyear |        .         .         .         .         .         .         .         .         .
                           _cons |  -0.3148   -0.0076   -0.1021   -0.0719    0.0550   -0.7077   -0.2738   -0.0525   -0.4038
                    
                                 |                                                       2009.     2010.     2011.     2012.
                            e(V) | CEOisC~r  PercOu~e  PercBusy   PercOld  PercAp~O     fyear     fyear     fyear     fyear
                    -------------+------------------------------------------------------------------------------------------
                      CEOisChair |   1.0000                                                                                 
                     PercOutside |   0.0355    1.0000                                                                       
                        PercBusy |  -0.0212   -0.1899    1.0000                                                             
                         PercOld |   0.0301   -0.0617   -0.0227    1.0000                                                   
                    PercApptdA~O |  -0.2309   -0.2215   -0.1311    0.2353    1.0000                                         
                      2009.fyear |  -0.0207    0.0096    0.0131    0.0053    0.0358    1.0000                               
                      2010.fyear |  -0.0895   -0.0739   -0.0261   -0.0239    0.0764    0.6893    1.0000                     
                      2011.fyear |  -0.0489   -0.0414   -0.0419   -0.0547    0.0476    0.6232    0.9107    1.0000           
                      2012.fyear |  -0.0439   -0.0175   -0.0386   -0.0530    0.0450    0.6387    0.9015    0.9591    1.0000
                     2013o.fyear |        .         .         .         .         .         .         .         .         .
                           _cons |  -0.2182   -0.4941   -0.0878   -0.0085    0.4177    0.0757    0.2763    0.3138    0.3288
                    
                                 |    2013o.          
                            e(V) |    fyear     _cons
                    -------------+--------------------
                     2013o.fyear |        .           
                           _cons |        .    1.0000

                    Here I have omitted the CEO tenure variable and now the regression keeps 2013 in the model. However, in the model above and below the years 2007 and 2008 are also omitted and I have no clue why (one obviously to prevend omitted variable bias)...


                    Code:
                    xtreg LnCEO_compensation  LnMarketcap BtM ROA ChangeInROA LagAnnualizedMonthlyReturn AgeCEO NewCEO  Boardsize
                    > CEOisChair  PercOutside PercBusy PercOld PercApptdAfterCEO i.fyear, fe cluster(gvkey)
                    
                    Fixed-effects (within) regression               Number of obs      =      6704
                    Group variable: gvkey                           Number of groups   =      1567
                    
                    R-sq:  within  = 0.1044                         Obs per group: min =         1
                           between = 0.1261                                        avg =       4.3
                           overall = 0.1192                                        max =         6
                    
                                                                    F(18,1566)         =     26.66
                    corr(u_i, Xb)  = 0.1599                         Prob > F           =    0.0000
                    
                                                                 (Std. Err. adjusted for 1567 clusters in gvkey)
                    --------------------------------------------------------------------------------------------
                                               |               Robust
                            LnCEO_compensation |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                    ---------------------------+----------------------------------------------------------------
                                   LnMarketcap |   .0306472   .0073632     4.16   0.000     .0162045    .0450899
                                           BtM |  -.0028289   .0015614    -1.81   0.070    -.0058916    .0002337
                                           ROA |   .7498007   .2494652     3.01   0.003     .2604796    1.239122
                                   ChangeInROA |   .8311876   .2169715     3.83   0.000     .4056023    1.256773
                    LagAnnualizedMonthlyReturn |   .0827663   .0145514     5.69   0.000      .054224    .1113086
                                        AgeCEO |   .0030093   .0029904     1.01   0.314    -.0028563    .0088749
                                        NewCEO |  -.0011906   .0245491    -0.05   0.961    -.0493432    .0469619
                                     Boardsize |  -.0076066   .0089576    -0.85   0.396    -.0251767    .0099635
                                    CEOisChair |   .0532522   .0281416     1.89   0.059    -.0019471    .1084514
                                   PercOutside |   .1349533   .1474511     0.92   0.360    -.1542691    .4241757
                                      PercBusy |   .2181248   .0849761     2.57   0.010     .0514459    .3848036
                                       PercOld |   .1249191   .0781931     1.60   0.110    -.0284551    .2782934
                             PercApptdAfterCEO |   .2993863   .1213933     2.47   0.014     .0612758    .5374968
                                               |
                                         fyear |
                                         2009  |  -.0249349   .0209489    -1.19   0.234    -.0660258     .016156
                                         2010  |   .0884912   .0206666     4.28   0.000      .047954    .1290283
                                         2011  |   .1569294   .0233754     6.71   0.000     .1110791    .2027797
                                         2012  |   .1765662   .0283534     6.23   0.000     .1209517    .2321808
                                         2013  |   .2186899   .0821929     2.66   0.008     .0574703    .3799096
                                               |
                                         _cons |   7.458374   .2308479    32.31   0.000     7.005571    7.911178
                    ---------------------------+----------------------------------------------------------------
                                       sigma_u |  .85316989
                                       sigma_e |  .44585107
                                           rho |  .78548934   (fraction of variance due to u_i)
                    --------------------------------------------------------------------------------------------



                    Finally, I have just contacted the administrators to change my username.

                    Best,

                    Roy

                    Comment


                    • #11
                      Well, 2007 is omitted because it is the base year for your indicator variables. The mystery is why 2008 is also omitted. It is not due to collinearity because Stata would have given you a message about that right below your command line. (Notice how it did that in your original model.) The most likely explanation (actually, the only one I can think of) is that after taking into account that observations containing missing values for any variable in the model are eliminated from estimation, there just aren't any observations left with year = 2008 (even though you started out with plenty of them.) So I would run:

                      Code:
                      tab year if e(sample)
                      to see if 2008 appears among the years in the estimation sample. I imagine it will not. Then you have to figure out why that is. It may be just that the haphazard scattering of missing data among your variables coincidentally left you with nothing usable in 2008. More likely, there may be some variable in your model which is all missing values in the year 2008, perhaps some construct that was not measured in that year, or was omitted from the 2008 data for some reason.

                      Comment


                      • #12
                        Roy:
                        Thanks for re-registering.
                        The substantive issue is the very high correlation between the variables -CEO tenure- and -years-. Hence, you should decide which one to keep in the model.
                        Kind regards,
                        Carlo
                        (StataNow 18.5)

                        Comment


                        • #13
                          Clyde, if I use the commands as you specified above I get the following:

                          Code:
                          . tab fyear
                          
                                fyear |      Freq.     Percent        Cum.
                          ------------+-----------------------------------
                                 2007 |      1,226       12.69       12.69
                                 2008 |      1,356       14.04       26.73
                                 2009 |      1,415       14.65       41.39
                                 2010 |      1,437       14.88       56.26
                                 2011 |      1,438       14.89       71.15
                                 2012 |      1,416       14.66       85.81
                                 2013 |      1,370       14.19      100.00
                          ------------+-----------------------------------
                                Total |      9,658      100.00
                          
                          . tab fyear if e(sample)
                          
                                fyear |      Freq.     Percent        Cum.
                          ------------+-----------------------------------
                                 2008 |      1,307       19.60       19.60
                                 2009 |      1,337       20.05       39.65
                                 2010 |      1,333       19.99       59.63
                                 2011 |      1,343       20.14       79.77
                                 2012 |      1,296       19.43       99.21
                                 2013 |         53        0.79      100.00
                          ------------+-----------------------------------
                                Total |      6,669      100.00
                          I think it is strange that so little observations from 2013 are left in the sample and that 2008 is not even presented to us in the regression output while there are 1,307 observations in the sample from a possible 1,356...

                          I hope you have any more ideas regarding this.

                          Tomorrow, I will have another look on the specification of my "CEO tenure" variable since it is indeed very highly correlated with the time variable in the data. Furthermore, I will have another look at the variable "Change in ROA" since there might be a problem. I will let you know tomorrow when I had the chance to look at it.

                          Best,

                          Roy

                          Comment


                          • #14
                            This seems very bizarre. I can't comment on the small number of observations with 2013 in the estimation sample: I can only assume that it's some peculiarity related to missing values in your data and leave it to you to investigate that. But the failure of 2008 to appear in the output is a mystery. The only other thing I can think of is if that variable is somehow set in such a way as to cause that. What does Stata say about fyear if you run -fvset report-?

                            Added: one more thing that's just a general standby--is your Stata up to date? Try -update query- to see if there may be an update since your last.

                            Comment


                            • #15
                              Thanks for your time and effort.

                              I have managed to fix the data and now it appears like the following:

                              Code:
                              xtreg  LnCEO_compensation  LnMarketcap BtM ROA ChangeInROA LagAnnualizedMonthlyReturn AgeCEO TenureCEO NewCEO
                              >  CEOisChair Boardsize PercOutside PercBusy PercOld PercApptdAfterCEO i.fyear, fe cluster(gvkey)
                              
                              Fixed-effects (within) regression               Number of obs      =      9176
                              Group variable: gvkey                           Number of groups   =      1564
                              
                              R-sq:  within  = 0.1186                         Obs per group: min =         1
                                     between = 0.0150                                        avg =       5.9
                                     overall = 0.0274                                        max =         7
                              
                                                                              F(20,1563)         =     39.16
                              corr(u_i, Xb)  = -0.2153                        Prob > F           =    0.0000
                              
                                                                           (Std. Err. adjusted for 1564 clusters in gvkey)
                              --------------------------------------------------------------------------------------------
                                                         |               Robust
                                      LnCEO_compensation |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                              ---------------------------+----------------------------------------------------------------
                                             LnMarketcap |   .0394152    .006716     5.87   0.000      .026242    .0525884
                                                     BtM |  -.0104713   .0033253    -3.15   0.002    -.0169939   -.0039487
                                                     ROA |   .8594852   .1666709     5.16   0.000     .5325631    1.186407
                                             ChangeInROA |   .6459091   .2180657     2.96   0.003     .2181769    1.073641
                              LagAnnualizedMonthlyReturn |   .0994488   .0145736     6.82   0.000      .070863    .1280347
                                                  AgeCEO |   .0026646   .0023262     1.15   0.252    -.0018982    .0072275
                                               TenureCEO |   .0393694   .0123448     3.19   0.001     .0151552    .0635836
                                                  NewCEO |   .0401013   .0253753     1.58   0.114     -.009672    .0898746
                                              CEOisChair |   .0316066   .0228494     1.38   0.167    -.0132121    .0764254
                                               Boardsize |   .0015619   .0075025     0.21   0.835    -.0131541    .0162779
                                             PercOutside |   .2239039   .1183024     1.89   0.059    -.0081441     .455952
                                                PercBusy |   .1380394   .0660623     2.09   0.037     .0084594    .2676195
                                                 PercOld |     .04945   .0641041     0.77   0.441     -.076289    .1751891
                                       PercApptdAfterCEO |    .069633   .0966974     0.72   0.472    -.1200373    .2593032
                                                         |
                                                   fyear |
                                                   2008  |  -.0028282   .0189923    -0.15   0.882    -.0400813    .0344248
                                                   2009  |  -.0497692   .0258332    -1.93   0.054    -.1004405    .0009021
                                                   2010  |   .0298012   .0296231     1.01   0.315     -.028304    .0879065
                                                   2011  |   .0769887   .0374103     2.06   0.040     .0036091    .1503683
                                                   2012  |   .0694241   .0485345     1.43   0.153    -.0257755    .1646237
                                                   2013  |   .0950013   .0579988     1.64   0.102    -.0187625     .208765
                                                         |
                                                   _cons |   7.179339   .1870619    38.38   0.000     6.812421    7.546258
                              ---------------------------+----------------------------------------------------------------
                                                 sigma_u |  .92318895
                                                 sigma_e |  .45285629
                                                     rho |  .80604575   (fraction of variance due to u_i)
                              --------------------------------------------------------------------------------------------
                              
                              
                               tab fyear if e(sample)
                              
                                    fyear |      Freq.     Percent        Cum.
                              ------------+-----------------------------------
                                     2007 |      1,195       13.02       13.02
                                     2008 |      1,322       14.41       27.43
                                     2009 |      1,346       14.67       42.10
                                     2010 |      1,344       14.65       56.75
                                     2011 |      1,363       14.85       71.60
                                     2012 |      1,322       14.41       86.01
                                     2013 |      1,284       13.99      100.00
                              ------------+-----------------------------------
                                    Total |      9,176      100.00
                              The only thing that is left for me is to figure out why "CEO tenure" and "New CEO" are highly correlated with the variable "fyear". I have to code them in a different way I guess.

                              At least, the problem of omitted year dummies is resolved.

                              Best,

                              Roy

                              Comment

                              Working...
                              X