Hi!
Very new to stata. I'm trying to replicate/extend the findings of this paper
The replication file is in there.
Imagine I have this data (this is just some randomly generated data. The actual data is too heavy to post)
* Generate random data similar to RegressionData.dta
clear
set seed 12345
set obs 90000 // Adjust to create 9000 unique banks with multiple time periods
* Simulate bank ID (rssdid) and time (date in quarterly format)
gen rssdid = floor((runiform() * 9000)) + 100000
gen date = tq(2000q1) + floor(runiform()*100)
format date %tq
* Drop duplicate combinations of bank ID and date
duplicates drop rssdid date, force
* Simulate interest income and expense rates
gen s1_intincrate = runiform(0.01, 0.06)
gen s1_intexprate = runiform(0.005, 0.05)
* Simulate NIM
gen s1_nim = s1_intincrate - s1_intexprate
* Simulate current and lagged federal funds rate shocks
gen s1_fedfunds = rnormal(0.02, 0.005)
gen l1_s1_fedfunds = s1_fedfunds + rnormal(0, 0.001)
gen l2_s1_fedfunds = l1_s1_fedfunds + rnormal(0, 0.001)
gen l3_s1_fedfunds = l2_s1_fedfunds + rnormal(0, 0.001)
* Simulate rank percentile and equity-to-assets ratio
gen rankpctile = runiform()*100
gen s1_equity_assets = runiform(0.05, 0.20)
* Set panel structure
xtset rssdid date
* Optional: sort and compress
sort rssdid date
My idea is to extend some results, and I'd like to parallelize the bootstrap, because otherwise, it takes too long.
[parallel setclusters 8
capture program drop t2_v3
program define t2_v3, rclass
preserve
* * * * *
bsample, cluster(date)
*sort rssdid date
*xtset rssdid date
// No time fixed effects
reghdfe s1_intexprate, absorb(i.rssdid i.rssdid#(c.s1_fedfunds c.l1_s1_fedfunds c.l2_s1_fedfunds c.l3_s1_fedfunds), save)
gen expbeta1 = __hdfe2__Slope1 + __hdfe2__Slope2 + __hdfe2__Slope3 + __hdfe2__Slope4
drop __hdfe1__-__hdfe2__Slope4
reghdfe s1_intincrate, absorb(i.rssdid i.rssdid#(c.s1_fedfunds c.l1_s1_fedfunds c.l2_s1_fedfunds c.l3_s1_fedfunds), save)
gen incbeta1 = __hdfe2__Slope1 + __hdfe2__Slope2 + __hdfe2__Slope3 + __hdfe2__Slope4
drop __hdfe1__-__hdfe2__Slope4
*reghdfe s1_equity_assets, absorb(i.rssdid i.rssdid#(c.s1_fedfunds c.l1_s1_fedfunds c.l2_s1_fedfunds c.l3_s1_fedfunds), save) --> for some reason, this does not work. the one below does
reghdfe s1_equity_assets, absorb(i.rssdid i.rssdid#c.s1_fedfunds i.rssdid#c.l1_s1_fedfunds i.rssdid#c.l2_s1_fedfunds i.rssdid#c.l3_s1_fedfunds, save)
gen equitybeta1 = __hdfe2__Slope1 + __hdfe3__Slope1 + __hdfe4__Slope1 + __hdfe5__Slope1
drop __hdfe2__Slope1 __hdfe3__Slope1 __hdfe4__Slope1 __hdfe5__Slope1
// With time fixed effects
reghdfe s1_intexprate, absorb(i.rssdid i.rssdid#(c.s1_fedfunds c.l1_s1_fedfunds c.l2_s1_fedfunds c.l3_s1_fedfunds) i.date, save)
gen expbeta2 = __hdfe2__Slope1 + __hdfe2__Slope2 + __hdfe2__Slope3 + __hdfe2__Slope4
drop __hdfe1__-__hdfe2__Slope4
reghdfe s1_intincrate, absorb(i.rssdid i.rssdid#(c.s1_fedfunds c.l1_s1_fedfunds c.l2_s1_fedfunds c.l3_s1_fedfunds) i.date, save)
gen incbeta2 = __hdfe2__Slope1 + __hdfe2__Slope2 + __hdfe2__Slope3 + __hdfe2__Slope4
drop __hdfe1__-__hdfe2__Slope4
reghdfe s1_equity_assets, absorb(i.rssdid i.rssdid#c.s1_fedfunds i.rssdid#c.l1_s1_fedfunds i.rssdid#c.l2_s1_fedfunds i.rssdid#c.l3_s1_fedfunds i.date, save)
gen equitybeta2 = __hdfe2__Slope1 + __hdfe3__Slope1 + __hdfe4__Slope1 + __hdfe5__Slope1
drop __hdfe2__Slope1 __hdfe3__Slope1 __hdfe4__Slope1 __hdfe5__Slope1
collapse incbeta1 expbeta1 incbeta2 expbeta2 equitybeta1 equitybeta2 rankpctile, by(rssdid)
winsor2 *beta*, cuts(5 95) replace
gen nimbeta1 = incbeta1 - expbeta1
gen nimbeta2 = incbeta2 - expbeta2
*pause
*gen niibeta = incbeta2 - expbeta2
// No time fixed effects
reg incbeta1 expbeta1
mat coef1 = e(b)
return scalar expbeta1_coef = el(coef1, 1, 1)
return scalar cons1_coef = el(coef1, 1, 2)
mat coef2 = e(V)
return scalar expbeta1_var = el(coef2, 1, 1)
return scalar cons1_var = el(coef2, 2, 2)
return scalar N1_100 = e(N)
reg incbeta1 expbeta1 if rankpctile >= 91
mat coef3 = e(b)
return scalar expbeta1_coef_10 = el(coef3, 1, 1)
return scalar cons1_coef_10 = el(coef3, 1, 2)
mat coef4 = e(V)
return scalar expbeta1_var_10 = el(coef4, 1, 1)
return scalar cons1_var_10 = el(coef4, 2, 2)
return scalar N1_10 = e(N)
reg incbeta1 expbeta1 if rankpctile >= 96
mat coef5 = e(b)
return scalar expbeta1_coef_5 = el(coef5, 1, 1)
return scalar cons1_coef_5 = el(coef5, 1, 2)
mat coef6 = e(V)
return scalar expbeta1_var_5 = el(coef6, 1, 1)
return scalar cons1_var_5 = el(coef6, 2, 2)
return scalar N1_5 = e(N)
reg incbeta1 expbeta1 if rankpctile >= 100
mat coef7 = e(b)
return scalar expbeta1_coef_1 = el(coef7, 1, 1)
return scalar cons1_coef_1 = el(coef7, 1, 2)
mat coef8 = e(V)
return scalar expbeta1_var_1 = el(coef8, 1, 1)
return scalar cons1_var_1 = el(coef8, 2, 2)
return scalar N1_1 = e(N)
// With time fixed effects
reg incbeta2 expbeta2
mat coef9 = e(b)
return scalar expbeta2_coef = el(coef9, 1, 1)
return scalar cons2_coef = el(coef9, 1, 2)
mat coef10 = e(V)
return scalar expbeta2_var = el(coef10, 1, 1)
return scalar cons2_var = el(coef10, 2, 2)
return scalar N2_100 = e(N)
reg incbeta2 expbeta2 if rankpctile >= 91
mat coef11 = e(b)
return scalar expbeta2_coef_10 = el(coef11, 1, 1)
return scalar cons2_coef_10 = el(coef11, 1, 2)
mat coef12 = e(V)
return scalar expbeta2_var_10 = el(coef12, 1, 1)
return scalar cons2_var_10 = el(coef12, 2, 2)
return scalar N2_10 = e(N)
reg incbeta2 expbeta2 if rankpctile >= 96
mat coef13 = e(b)
return scalar expbeta2_coef_5 = el(coef13, 1, 1)
return scalar cons2_coef_5 = el(coef13, 1, 2)
mat coef14 = e(V)
return scalar expbeta2_var_5 = el(coef14, 1, 1)
return scalar cons2_var_5 = el(coef14, 2, 2)
return scalar N2_5 = e(N)
reg incbeta2 expbeta2 if rankpctile >= 100
mat coef15 = e(b)
return scalar expbeta2_coef_1 = el(coef15, 1, 1)
return scalar cons2_coef_1 = el(coef15, 1, 2)
mat coef16 = e(V)
return scalar expbeta2_var_1 = el(coef16, 1, 1)
return scalar cons2_var_1 = el(coef16, 2, 2)
return scalar N2_1 = e(N)
// Now add the regressions of equity on nimbeta1
reg equitybeta1 nimbeta1
mat coef17 = e(b)
return scalar nimbeta1_coef = el(coef17, 1, 1)
return scalar cons3_coef = el(coef17, 1, 2)
mat coef18 = e(V)
return scalar nimbeta1_var = el(coef18, 1, 1)
return scalar cons3_var = el(coef18, 2, 2)
return scalar N3_100 = e(N)
reg equitybeta1 nimbeta1 if rankpctile >= 91
mat coef19 = e(b)
return scalar nimbeta1_coef_10 = el(coef19, 1, 1)
return scalar cons3_coef_10 = el(coef19, 1, 2)
mat coef20 = e(V)
return scalar nimbeta1_var_10 = el(coef20, 1, 1)
return scalar cons3_var_10 = el(coef20, 2, 2)
return scalar N3_10 = e(N)
reg equitybeta1 nimbeta1 if rankpctile >= 96
mat coef21 = e(b)
return scalar nimbeta1_coef_5 = el(coef21, 1, 1)
return scalar cons3_coef_5 = el(coef21, 1, 2)
mat coef22 = e(V)
return scalar nimbeta1_var_5 = el(coef22, 1, 1)
return scalar cons3_var_5 = el(coef22, 2, 2)
return scalar N3_5 = e(N)
reg equitybeta1 nimbeta1 if rankpctile >= 100
mat coef23 = e(b)
return scalar nimbeta1_coef_1 = el(coef23, 1, 1)
return scalar cons3_coef_1 = el(coef23, 1, 2)
mat coef24 = e(V)
return scalar nimbeta1_var_1 = el(coef24, 1, 1)
return scalar cons3_var_1 = el(coef24, 2, 2)
return scalar N3_1 = e(N)
// Now the same, but with time fixed effects
reg equitybeta2 nimbeta2
mat coef25 = e(b)
return scalar nimbeta2_coef = el(coef25, 1, 1)
return scalar cons4_coef = el(coef25, 1, 2)
mat coef25 = e(V)
return scalar nimbeta2_var = el(coef25, 1, 1)
return scalar cons4_var = el(coef25, 2, 2)
return scalar N4_100 = e(N)
reg equitybeta2 nimbeta2 if rankpctile >= 91
mat coef26 = e(b)
return scalar nimbeta2_coef_10 = el(coef26, 1, 1)
return scalar cons4_coef_10 = el(coef26, 1, 2)
mat coef27 = e(V)
return scalar nimbeta2_var_10 = el(coef27, 1, 1)
return scalar cons4_var_10 = el(coef27, 2, 2)
return scalar N4_10 = e(N)
reg equitybeta2 nimbeta2 if rankpctile >= 96
mat coef28 = e(b)
return scalar nimbeta2_coef_5 = el(coef28, 1, 1)
return scalar cons4_coef_5 = el(coef28, 1, 2)
mat coef29 = e(V)
return scalar nimbeta2_var_5 = el(coef29, 1, 1)
return scalar cons4_var_5 = el(coef29, 2, 2)
return scalar N4_5 = e(N)
reg equitybeta2 nimbeta2 if rankpctile >= 100
mat coef30 = e(b)
return scalar nimbeta2_coef_1 = el(coef30, 1, 1)
return scalar cons4_coef_1 = el(coef30, 1, 2)
mat coef31 = e(V)
return scalar nimbeta2_var_1 = el(coef31, 1, 1)
return scalar cons4_var_1 = el(coef31, 2, 2)
return scalar N4_1 = e(N)
* * * * *
restore
end
* * * * * * * * * * * * * * *
* B - Simulation
* * * * * * * * * * * * * * *
set seed 2020
parallel bs reps(10): simulate, expbeta1 = r(expbeta1_coef) var1 = r(expbeta1_var) cons1 = r(cons1_coef) consvar1 = r(cons1_var) N1_100 = r(N1_100) ///
expbeta1_10 = r(expbeta1_coef_10) var1_10 = r(expbeta1_var_10) cons1_10 = r(cons1_coef_10) consvar1_10 = r(cons1_var_10) N1_10 = r(N1_10) ///
expbeta1_5 = r(expbeta1_coef_5) var1_5 = r(expbeta1_var_5) cons1_5 = r(cons1_coef_5) consvar1_5 = r(cons1_var_5) N1_5 = r(N1_5) ///
expbeta1_1 = r(expbeta1_coef_1) var1_1 = r(expbeta1_var_1) cons1_1 = r(cons1_coef_1) consvar1_1 = r(cons1_var_1) N1_1 = r(N1_1) ///
expbeta2 = r(expbeta2_coef) var2 = r(expbeta2_var) cons2 = r(cons2_coef) consvar2 = r(cons2_var) N2_100 = r(N2_100) ///
expbeta2_10 = r(expbeta2_coef_10) var2_10 = r(expbeta2_var_10) cons2_10 = r(cons2_coef_10) consvar2_10 = r(cons2_var_10) N2_10 = r(N2_10) ///
expbeta2_5 = r(expbeta2_coef_5) var2_5 = r(expbeta2_var_5) cons2_5 = r(cons2_coef_5) consvar2_5 = r(cons2_var_5) N2_5 = r(N2_5) ///
expbeta2_1 = r(expbeta2_coef_1) var2_1 = r(expbeta2_var_1) cons2_1 = r(cons2_coef_1) consvar2_1 = r(cons2_var_1) N2_1 = r(N2_1) ///
nimbeta1 = r(nimbeta1_coef) var3 = r(nimbeta1_var) cons3 = r(cons3_coef) consvar3 = r(cons3_var) N3_100 = r(N3_100) ///
nimbeta1_10 = r(nimbeta1_coef_10) var3_10 = r(nimbeta1_var_10) cons3_10 = r(cons3_coef_10) consvar3_10 = r(cons3_var_10) N3_10 = r(N3_10) ///
nimbeta1_5 = r(nimbeta1_coef_5) var3_5 = r(nimbeta1_var_5) cons3_5 = r(cons3_coef_5) consvar3_5 = r(cons3_var_5) N3_5 = r(N3_5) ///
nimbeta1_1 = r(nimbeta1_coef_1) var3_1 = r(nimbeta1_var_1) cons3_1 = r(cons3_coef_1) consvar3_1 = r(cons3_var_1) N3_1 = r(N3_1) ///
nimbeta2 = r(nimbeta2_coef) var4 = r(nimbeta2_var) cons4 = r(cons4_coef) consvar4 = r(cons4_var) N4_100 = r(N4_100) ///
nimbeta2_10 = r(nimbeta2_coef_10) var4_10 = r(nimbeta2_var_10) cons4_10 = r(cons4_coef_10) consvar4_10 = r(cons4_var_10) N4_10 = r(N4_10) ///
nimbeta2_5 = r(nimbeta2_coef_5) var4_5 = r(nimbeta2_var_5) cons4_5 = r(cons4_coef_5) consvar4_5 = r(cons4_var_5) N4_5 = r(N4_5) ///
nimbeta2_1 = r(nimbeta2_coef_1) var4_1 = r(nimbeta2_var_1) cons4_1 = r(cons4_coef_1) consvar4_1 = r(cons4_var_1) N4_1 = r(N4_1) ///
,reps(10) : t2_v3
]
That code breaks by saying
"
Parallel Computing with Stata (by GVY)
Clusters : 8
pll_id : w8quls7pe1
Running at : C:\Users\josef\OneDrive - KU Leuven\PhD - Leuven\Banking project\EMPIRICAL\Call Reports Chicago Fed\DepositSensitivity
Randtype : datetime
Waiting for the clusters to finish...
cluster 0003 Exited with error -198- while running the command/dofile (view log)...
cluster 0005 Exited with error -198- while running the command/dofile (view log)...
cluster 0006 Exited with error -198- while running the command/dofile (view log)...
cluster 0007 Exited with error -198- while running the command/dofile (view log)...
cluster 0008 Exited with error -198- while running the command/dofile (view log)...
cluster 0001 Exited with error -198- while running the command/dofile (view log)...
cluster 0002 Exited with error -198- while running the command/dofile (view log)...
cluster 0004 Exited with error -198- while running the command/dofile (view log)...
--------------------------------------------------------------------------------
Enter -parallel printlog #- to checkout logfiles.
--------------------------------------------------------------------------------
"
any ideas?
Thanks!
Very new to stata. I'm trying to replicate/extend the findings of this paper
The replication file is in there.
Imagine I have this data (this is just some randomly generated data. The actual data is too heavy to post)
* Generate random data similar to RegressionData.dta
clear
set seed 12345
set obs 90000 // Adjust to create 9000 unique banks with multiple time periods
* Simulate bank ID (rssdid) and time (date in quarterly format)
gen rssdid = floor((runiform() * 9000)) + 100000
gen date = tq(2000q1) + floor(runiform()*100)
format date %tq
* Drop duplicate combinations of bank ID and date
duplicates drop rssdid date, force
* Simulate interest income and expense rates
gen s1_intincrate = runiform(0.01, 0.06)
gen s1_intexprate = runiform(0.005, 0.05)
* Simulate NIM
gen s1_nim = s1_intincrate - s1_intexprate
* Simulate current and lagged federal funds rate shocks
gen s1_fedfunds = rnormal(0.02, 0.005)
gen l1_s1_fedfunds = s1_fedfunds + rnormal(0, 0.001)
gen l2_s1_fedfunds = l1_s1_fedfunds + rnormal(0, 0.001)
gen l3_s1_fedfunds = l2_s1_fedfunds + rnormal(0, 0.001)
* Simulate rank percentile and equity-to-assets ratio
gen rankpctile = runiform()*100
gen s1_equity_assets = runiform(0.05, 0.20)
* Set panel structure
xtset rssdid date
* Optional: sort and compress
sort rssdid date
My idea is to extend some results, and I'd like to parallelize the bootstrap, because otherwise, it takes too long.
[parallel setclusters 8
capture program drop t2_v3
program define t2_v3, rclass
preserve
* * * * *
bsample, cluster(date)
*sort rssdid date
*xtset rssdid date
// No time fixed effects
reghdfe s1_intexprate, absorb(i.rssdid i.rssdid#(c.s1_fedfunds c.l1_s1_fedfunds c.l2_s1_fedfunds c.l3_s1_fedfunds), save)
gen expbeta1 = __hdfe2__Slope1 + __hdfe2__Slope2 + __hdfe2__Slope3 + __hdfe2__Slope4
drop __hdfe1__-__hdfe2__Slope4
reghdfe s1_intincrate, absorb(i.rssdid i.rssdid#(c.s1_fedfunds c.l1_s1_fedfunds c.l2_s1_fedfunds c.l3_s1_fedfunds), save)
gen incbeta1 = __hdfe2__Slope1 + __hdfe2__Slope2 + __hdfe2__Slope3 + __hdfe2__Slope4
drop __hdfe1__-__hdfe2__Slope4
*reghdfe s1_equity_assets, absorb(i.rssdid i.rssdid#(c.s1_fedfunds c.l1_s1_fedfunds c.l2_s1_fedfunds c.l3_s1_fedfunds), save) --> for some reason, this does not work. the one below does
reghdfe s1_equity_assets, absorb(i.rssdid i.rssdid#c.s1_fedfunds i.rssdid#c.l1_s1_fedfunds i.rssdid#c.l2_s1_fedfunds i.rssdid#c.l3_s1_fedfunds, save)
gen equitybeta1 = __hdfe2__Slope1 + __hdfe3__Slope1 + __hdfe4__Slope1 + __hdfe5__Slope1
drop __hdfe2__Slope1 __hdfe3__Slope1 __hdfe4__Slope1 __hdfe5__Slope1
// With time fixed effects
reghdfe s1_intexprate, absorb(i.rssdid i.rssdid#(c.s1_fedfunds c.l1_s1_fedfunds c.l2_s1_fedfunds c.l3_s1_fedfunds) i.date, save)
gen expbeta2 = __hdfe2__Slope1 + __hdfe2__Slope2 + __hdfe2__Slope3 + __hdfe2__Slope4
drop __hdfe1__-__hdfe2__Slope4
reghdfe s1_intincrate, absorb(i.rssdid i.rssdid#(c.s1_fedfunds c.l1_s1_fedfunds c.l2_s1_fedfunds c.l3_s1_fedfunds) i.date, save)
gen incbeta2 = __hdfe2__Slope1 + __hdfe2__Slope2 + __hdfe2__Slope3 + __hdfe2__Slope4
drop __hdfe1__-__hdfe2__Slope4
reghdfe s1_equity_assets, absorb(i.rssdid i.rssdid#c.s1_fedfunds i.rssdid#c.l1_s1_fedfunds i.rssdid#c.l2_s1_fedfunds i.rssdid#c.l3_s1_fedfunds i.date, save)
gen equitybeta2 = __hdfe2__Slope1 + __hdfe3__Slope1 + __hdfe4__Slope1 + __hdfe5__Slope1
drop __hdfe2__Slope1 __hdfe3__Slope1 __hdfe4__Slope1 __hdfe5__Slope1
collapse incbeta1 expbeta1 incbeta2 expbeta2 equitybeta1 equitybeta2 rankpctile, by(rssdid)
winsor2 *beta*, cuts(5 95) replace
gen nimbeta1 = incbeta1 - expbeta1
gen nimbeta2 = incbeta2 - expbeta2
*pause
*gen niibeta = incbeta2 - expbeta2
// No time fixed effects
reg incbeta1 expbeta1
mat coef1 = e(b)
return scalar expbeta1_coef = el(coef1, 1, 1)
return scalar cons1_coef = el(coef1, 1, 2)
mat coef2 = e(V)
return scalar expbeta1_var = el(coef2, 1, 1)
return scalar cons1_var = el(coef2, 2, 2)
return scalar N1_100 = e(N)
reg incbeta1 expbeta1 if rankpctile >= 91
mat coef3 = e(b)
return scalar expbeta1_coef_10 = el(coef3, 1, 1)
return scalar cons1_coef_10 = el(coef3, 1, 2)
mat coef4 = e(V)
return scalar expbeta1_var_10 = el(coef4, 1, 1)
return scalar cons1_var_10 = el(coef4, 2, 2)
return scalar N1_10 = e(N)
reg incbeta1 expbeta1 if rankpctile >= 96
mat coef5 = e(b)
return scalar expbeta1_coef_5 = el(coef5, 1, 1)
return scalar cons1_coef_5 = el(coef5, 1, 2)
mat coef6 = e(V)
return scalar expbeta1_var_5 = el(coef6, 1, 1)
return scalar cons1_var_5 = el(coef6, 2, 2)
return scalar N1_5 = e(N)
reg incbeta1 expbeta1 if rankpctile >= 100
mat coef7 = e(b)
return scalar expbeta1_coef_1 = el(coef7, 1, 1)
return scalar cons1_coef_1 = el(coef7, 1, 2)
mat coef8 = e(V)
return scalar expbeta1_var_1 = el(coef8, 1, 1)
return scalar cons1_var_1 = el(coef8, 2, 2)
return scalar N1_1 = e(N)
// With time fixed effects
reg incbeta2 expbeta2
mat coef9 = e(b)
return scalar expbeta2_coef = el(coef9, 1, 1)
return scalar cons2_coef = el(coef9, 1, 2)
mat coef10 = e(V)
return scalar expbeta2_var = el(coef10, 1, 1)
return scalar cons2_var = el(coef10, 2, 2)
return scalar N2_100 = e(N)
reg incbeta2 expbeta2 if rankpctile >= 91
mat coef11 = e(b)
return scalar expbeta2_coef_10 = el(coef11, 1, 1)
return scalar cons2_coef_10 = el(coef11, 1, 2)
mat coef12 = e(V)
return scalar expbeta2_var_10 = el(coef12, 1, 1)
return scalar cons2_var_10 = el(coef12, 2, 2)
return scalar N2_10 = e(N)
reg incbeta2 expbeta2 if rankpctile >= 96
mat coef13 = e(b)
return scalar expbeta2_coef_5 = el(coef13, 1, 1)
return scalar cons2_coef_5 = el(coef13, 1, 2)
mat coef14 = e(V)
return scalar expbeta2_var_5 = el(coef14, 1, 1)
return scalar cons2_var_5 = el(coef14, 2, 2)
return scalar N2_5 = e(N)
reg incbeta2 expbeta2 if rankpctile >= 100
mat coef15 = e(b)
return scalar expbeta2_coef_1 = el(coef15, 1, 1)
return scalar cons2_coef_1 = el(coef15, 1, 2)
mat coef16 = e(V)
return scalar expbeta2_var_1 = el(coef16, 1, 1)
return scalar cons2_var_1 = el(coef16, 2, 2)
return scalar N2_1 = e(N)
// Now add the regressions of equity on nimbeta1
reg equitybeta1 nimbeta1
mat coef17 = e(b)
return scalar nimbeta1_coef = el(coef17, 1, 1)
return scalar cons3_coef = el(coef17, 1, 2)
mat coef18 = e(V)
return scalar nimbeta1_var = el(coef18, 1, 1)
return scalar cons3_var = el(coef18, 2, 2)
return scalar N3_100 = e(N)
reg equitybeta1 nimbeta1 if rankpctile >= 91
mat coef19 = e(b)
return scalar nimbeta1_coef_10 = el(coef19, 1, 1)
return scalar cons3_coef_10 = el(coef19, 1, 2)
mat coef20 = e(V)
return scalar nimbeta1_var_10 = el(coef20, 1, 1)
return scalar cons3_var_10 = el(coef20, 2, 2)
return scalar N3_10 = e(N)
reg equitybeta1 nimbeta1 if rankpctile >= 96
mat coef21 = e(b)
return scalar nimbeta1_coef_5 = el(coef21, 1, 1)
return scalar cons3_coef_5 = el(coef21, 1, 2)
mat coef22 = e(V)
return scalar nimbeta1_var_5 = el(coef22, 1, 1)
return scalar cons3_var_5 = el(coef22, 2, 2)
return scalar N3_5 = e(N)
reg equitybeta1 nimbeta1 if rankpctile >= 100
mat coef23 = e(b)
return scalar nimbeta1_coef_1 = el(coef23, 1, 1)
return scalar cons3_coef_1 = el(coef23, 1, 2)
mat coef24 = e(V)
return scalar nimbeta1_var_1 = el(coef24, 1, 1)
return scalar cons3_var_1 = el(coef24, 2, 2)
return scalar N3_1 = e(N)
// Now the same, but with time fixed effects
reg equitybeta2 nimbeta2
mat coef25 = e(b)
return scalar nimbeta2_coef = el(coef25, 1, 1)
return scalar cons4_coef = el(coef25, 1, 2)
mat coef25 = e(V)
return scalar nimbeta2_var = el(coef25, 1, 1)
return scalar cons4_var = el(coef25, 2, 2)
return scalar N4_100 = e(N)
reg equitybeta2 nimbeta2 if rankpctile >= 91
mat coef26 = e(b)
return scalar nimbeta2_coef_10 = el(coef26, 1, 1)
return scalar cons4_coef_10 = el(coef26, 1, 2)
mat coef27 = e(V)
return scalar nimbeta2_var_10 = el(coef27, 1, 1)
return scalar cons4_var_10 = el(coef27, 2, 2)
return scalar N4_10 = e(N)
reg equitybeta2 nimbeta2 if rankpctile >= 96
mat coef28 = e(b)
return scalar nimbeta2_coef_5 = el(coef28, 1, 1)
return scalar cons4_coef_5 = el(coef28, 1, 2)
mat coef29 = e(V)
return scalar nimbeta2_var_5 = el(coef29, 1, 1)
return scalar cons4_var_5 = el(coef29, 2, 2)
return scalar N4_5 = e(N)
reg equitybeta2 nimbeta2 if rankpctile >= 100
mat coef30 = e(b)
return scalar nimbeta2_coef_1 = el(coef30, 1, 1)
return scalar cons4_coef_1 = el(coef30, 1, 2)
mat coef31 = e(V)
return scalar nimbeta2_var_1 = el(coef31, 1, 1)
return scalar cons4_var_1 = el(coef31, 2, 2)
return scalar N4_1 = e(N)
* * * * *
restore
end
* * * * * * * * * * * * * * *
* B - Simulation
* * * * * * * * * * * * * * *
set seed 2020
parallel bs reps(10): simulate, expbeta1 = r(expbeta1_coef) var1 = r(expbeta1_var) cons1 = r(cons1_coef) consvar1 = r(cons1_var) N1_100 = r(N1_100) ///
expbeta1_10 = r(expbeta1_coef_10) var1_10 = r(expbeta1_var_10) cons1_10 = r(cons1_coef_10) consvar1_10 = r(cons1_var_10) N1_10 = r(N1_10) ///
expbeta1_5 = r(expbeta1_coef_5) var1_5 = r(expbeta1_var_5) cons1_5 = r(cons1_coef_5) consvar1_5 = r(cons1_var_5) N1_5 = r(N1_5) ///
expbeta1_1 = r(expbeta1_coef_1) var1_1 = r(expbeta1_var_1) cons1_1 = r(cons1_coef_1) consvar1_1 = r(cons1_var_1) N1_1 = r(N1_1) ///
expbeta2 = r(expbeta2_coef) var2 = r(expbeta2_var) cons2 = r(cons2_coef) consvar2 = r(cons2_var) N2_100 = r(N2_100) ///
expbeta2_10 = r(expbeta2_coef_10) var2_10 = r(expbeta2_var_10) cons2_10 = r(cons2_coef_10) consvar2_10 = r(cons2_var_10) N2_10 = r(N2_10) ///
expbeta2_5 = r(expbeta2_coef_5) var2_5 = r(expbeta2_var_5) cons2_5 = r(cons2_coef_5) consvar2_5 = r(cons2_var_5) N2_5 = r(N2_5) ///
expbeta2_1 = r(expbeta2_coef_1) var2_1 = r(expbeta2_var_1) cons2_1 = r(cons2_coef_1) consvar2_1 = r(cons2_var_1) N2_1 = r(N2_1) ///
nimbeta1 = r(nimbeta1_coef) var3 = r(nimbeta1_var) cons3 = r(cons3_coef) consvar3 = r(cons3_var) N3_100 = r(N3_100) ///
nimbeta1_10 = r(nimbeta1_coef_10) var3_10 = r(nimbeta1_var_10) cons3_10 = r(cons3_coef_10) consvar3_10 = r(cons3_var_10) N3_10 = r(N3_10) ///
nimbeta1_5 = r(nimbeta1_coef_5) var3_5 = r(nimbeta1_var_5) cons3_5 = r(cons3_coef_5) consvar3_5 = r(cons3_var_5) N3_5 = r(N3_5) ///
nimbeta1_1 = r(nimbeta1_coef_1) var3_1 = r(nimbeta1_var_1) cons3_1 = r(cons3_coef_1) consvar3_1 = r(cons3_var_1) N3_1 = r(N3_1) ///
nimbeta2 = r(nimbeta2_coef) var4 = r(nimbeta2_var) cons4 = r(cons4_coef) consvar4 = r(cons4_var) N4_100 = r(N4_100) ///
nimbeta2_10 = r(nimbeta2_coef_10) var4_10 = r(nimbeta2_var_10) cons4_10 = r(cons4_coef_10) consvar4_10 = r(cons4_var_10) N4_10 = r(N4_10) ///
nimbeta2_5 = r(nimbeta2_coef_5) var4_5 = r(nimbeta2_var_5) cons4_5 = r(cons4_coef_5) consvar4_5 = r(cons4_var_5) N4_5 = r(N4_5) ///
nimbeta2_1 = r(nimbeta2_coef_1) var4_1 = r(nimbeta2_var_1) cons4_1 = r(cons4_coef_1) consvar4_1 = r(cons4_var_1) N4_1 = r(N4_1) ///
,reps(10) : t2_v3
]
That code breaks by saying
"
Parallel Computing with Stata (by GVY)
Clusters : 8
pll_id : w8quls7pe1
Running at : C:\Users\josef\OneDrive - KU Leuven\PhD - Leuven\Banking project\EMPIRICAL\Call Reports Chicago Fed\DepositSensitivity
Randtype : datetime
Waiting for the clusters to finish...
cluster 0003 Exited with error -198- while running the command/dofile (view log)...
cluster 0005 Exited with error -198- while running the command/dofile (view log)...
cluster 0006 Exited with error -198- while running the command/dofile (view log)...
cluster 0007 Exited with error -198- while running the command/dofile (view log)...
cluster 0008 Exited with error -198- while running the command/dofile (view log)...
cluster 0001 Exited with error -198- while running the command/dofile (view log)...
cluster 0002 Exited with error -198- while running the command/dofile (view log)...
cluster 0004 Exited with error -198- while running the command/dofile (view log)...
--------------------------------------------------------------------------------
Enter -parallel printlog #- to checkout logfiles.
--------------------------------------------------------------------------------
"
any ideas?
Thanks!
Comment