I hope you're doing well.
i need to make matching
Here’s the setup with the variables I’m using:
I want to perform a matching procedure at the firm-year level. Specifically:
this is prensetataion of my data
this is
i need to make matching
Here’s the setup with the variables I’m using:
- Freeze – Indicator variable equal to 1 for the year of the freeze and the two subsequent years, and 0 for all other years.
- ff_12 – Industry classification (Fama-French 12).
- Firm_Size_w – A measure of firm size.
I want to perform a matching procedure at the firm-year level. Specifically:
- For each treatment firm-year where freeze = 1,
- I will identify a control firm-year that satisfies all of the following:
- Belongs to the same industry (ff_12),
- Is of similar size based on Firm_Size_w,
this is prensetataion of my data
this is
HTML Code:
----------------- copy up to and including the previous line ------------------ Listed 100 out of 8829 observations Use the count() option to list more . dataex id year freeze Firm_Size_w ----------------------- copy starting from the next line ----------------------- [CODE] * Example generated by -dataex-. For more info, type help dataex clear input long id float(year freeze Firm_Size_w) 2 2004 0 8.861633 2 2005 0 8.817446 2 2006 0 8.905037 2 2007 0 8.929832 2 2008 0 8.914223 2 2009 0 8.937481 2 2010 0 9.179469 2 2011 0 9.111293 2 2012 0 9.262553 2 2013 0 9.27669 2 2014 0 9.290168 2 2015 0 8.919854 2 2016 0 8.962135 2 2017 0 9.039078 2 2018 0 9.052633 2 2019 0 9.153981 2 2020 0 9.172327 2 2021 0 9.278466 2 2022 0 9.262174 3 2004 . 10.267193 3 2005 . 10.291976 3 2006 . 10.28004 3 2007 . 10.260147 3 2008 . 10.133607 3 2009 . 10.144 3 2010 0 10.130145 3 2011 0 10.079455 3 2012 1 10.06518 3 2013 1 10.652022 3 2014 1 10.686727 3 2015 . 10.787565 3 2016 . 10.84494 3 2017 . 10.847316 3 2018 . 11.01172 3 2019 . 11.002016 3 2020 . 11.03502 3 2021 . 11.10446 3 2022 . 11.077764 4 2004 . 7.697104 4 2005 . 7.840765 4 2006 . 7.894572 4 2007 . 7.939361 4 2008 . 7.994317 4 2009 . 8.030397 4 2010 . 8.117973 4 2011 . 8.204058 4 2012 . 8.4368105 4 2013 . 8.624211 4 2014 . 8.98248 4 2015 . 9.003878 4 2016 . 9.025821 4 2017 . 9.045737 4 2018 . 9.109487 4 2019 . 9.327992 4 2020 . 9.379209 4 2021 . 9.408716 4 2022 . 9.394201 5 2004 . 8.993427 5 2005 . 9.354527 5 2006 . 9.752955 5 2007 . 10.140415 5 2008 . 10.585877 5 2009 . 10.768506 5 2010 . 11.22768 5 2011 . 11.664538 5 2012 . 12.078603 5 2013 . 12.240474 5 2014 . 12.3538 5 2015 . 12.579287 5 2016 . 12.681332 5 2017 . 12.83553 5 2018 . 12.809637 5 2019 . 12.732327 5 2020 . 12.688153 5 2021 . 12.768547 5 2022 . 12.77353 6 2004 0 . 6 2005 0 . 6 2006 0 . 6 2007 0 . 6 2008 0 . 6 2009 0 . 6 2010 0 9.958672 6 2011 0 9.886197 6 2012 0 10.203888 6 2013 0 10.281856 6 2014 0 10.22365 6 2015 0 10.87899 6 2016 0 11.098908 6 2017 0 11.167417 6 2018 0 10.991241 6 2019 0 11.397683 6 2020 0 11.92215 6 2021 0 11.894979 6 2022 0 11.840825 8 2004 0 10.267 8 2005 0 10.279908 8 2006 0 10.49621 8 2007 0 10.589458 8 2008 0 10.655356 end label values id id label def id 2 "A", modify label def id 3 "AAL", modify label def id 4 "AAP", modify label def id 5 "AAPL", modify label def id 6 "ABBV", modify label def id 8 "ABT", modify [/CODE] ------------------ copy up to and including the previous line ------------------ Listed 100 out of 8829 observations Use the count() option to list more .
Comment