Hi, I have run a mixed model using data which was first natural log-transformed then Z-score standardised. I now want to plot the coefplot using the original scale. I have been able to back-transform the natural log (when running the model using data that has not been standardised; example code 1) but am having issues back-standardising for the Z-score standardised data (example code 2). I would be really grateful for some help!
EXAMPLE DATASET
Transformed and Z-score standardised variables were generated as follows:
EXAMPLE CODE 1
EXAMPLE CODE 2
Thanks so much in advance!
EXAMPLE DATASET
Code:
clear input id timepoint indep indep_z dep dep_ln dep_ln_z 1 1 44.65982 -.6603368 275.3574 5.61807 -1.654174 1 3 46.57632 -.4926517 424.2176 6.050247 -1.195439 2 1 71.85764 1.719354 696.8698 6.546598 -.6685855 2 3 73.61533 1.873145 1967.342 7.584439 .4330315 3 1 63.32101 .9724367 2065.605 7.633179 .4847665 3 3 65.4976 1.162879 4146.802 8.330092 1.224506 4 1 69.39904 1.504238 4224.268 8.348601 1.244153 4 2 69.49487 1.512622 3810.498 8.245515 1.134732 4 3 71.20329 1.662101 4845.657 8.485838 1.389823 5 1 56.25462 .3541578 1286.231 7.159472 -.0180506 5 3 58.34086 .5366949 1138.097 7.037113 -.147928 6 1 44.10404 -.7089653 3294.132 8.099897 .9801657 6 3 46.11636 -.5328959 2985.959 8.001677 .8759091 7 1 42.33265 -.8639541 1991.22 7.596503 .4458368 7 3 44.22998 -.6979459 2559.941 7.847739 .7125121 8 1 42.34634 -.8627566 1901.532 7.550415 .3969169 8 3 44.11499 -.708007 1918.238 7.559162 .4062015 9 1 53.21834 .0884967 391.9459 5.971124 -1.279424 9 3 54.97878 .2425276 475.6463 6.164675 -1.073979 10 1 69.25394 1.491542 3519.451 8.16606 1.050395 10 3 71.0527 1.648926 . . . 11 1 50.59548 -.1409922 275.9146 5.620091 -1.652028 11 2 50.69678 -.1321289 401.0999 5.99421 -1.254919 11 3 52.55305 .0302863 298.9796 5.700375 -1.56681 12 1 46.77618 -.4751645 1588.578 7.370595 .2060467 12 3 48.53936 -.3208942 1835.51 7.515078 .3594085 13 1 56.99932 .4193156 2119.239 7.658813 .5119756 13 3 58.85284 .5814908 2159.262 7.677522 .531835 14 1 64.08214 1.039032 4523.702 8.417086 1.316846 14 3 65.91102 1.199051 11463.95 9.346963 2.303865 15 1 50.93224 -.1115273 2617.079 7.869814 .7359433 16 1 44.33402 -.688843 1888.278 7.543421 .3894929 16 3 46.26968 -.5194811 1798.193 7.494537 .3376055 17 1 54.4011 .1919826 2395.07 7.781168 .6418495 17 3 56.50924 .3764359 2736.567 7.91446 .7833326 18 1 53.06776 .0753215 840.1093 6.733532 -.4701647 18 3 54.97878 .2425276 712.717 6.569084 -.644718 19 1 53.60986 .1227524 1810.514 7.501366 .3448539 19 3 55.53456 .2911561 2003.817 7.602809 .452531 20 1 47.12389 -.4447417 1371.873 7.223932 .0503709 20 3 48.93361 -.2863988 1852.236 7.524149 .3690367 21 1 32.48186 -1.725855 1107.922 7.010242 -.176451 21 3 34.48049 -1.550984 1137.389 7.03649 -.1485895 22 1 29.06776 -2.024574 168.108 5.124607 -2.17796 22 3 31.34839 -1.825029 286.0926 5.656315 -1.613578 23 1 55.44422 .2832511 3953.621 8.282387 1.173869 23 3 57.21834 .4384793 4854.037 8.487566 1.391657 24 1 58.90486 .5860425 1897.731 7.548414 .3947932 24 2 59.01711 .5958639 1522.961 7.328412 .1612711 24 3 60.65435 .7391148 1941.195 7.571059 .4188297 25 1 54.38741 .1907847 1599.642 7.377535 .2134136 25 3 56.1807 .34769 2159.759 7.677752 .5320789 26 1 48.98837 -.2816079 229.0388 5.433891 -1.84967 26 3 50.81998 -.1213492 294.4248 5.685024 -1.583105 27 1 40.65435 -1.010798 2167.241 7.68121 .5357494 27 3 42.75975 -.8265843 2378.167 7.774086 .6343322 28 1 54.9733 .2420483 4379.471 8.384684 1.282452 28 2 55.10746 .2537863 2878.377 7.964982 .8369596 28 3 56.73101 .3958396 4021.941 8.29952 1.192055 29 1 45.78234 -.5621211 2514.484 7.829823 .6934949 29 2 45.86174 -.5551741 4789.418 8.474164 1.377432 29 3 47.54826 -.4076112 4415.059 8.392776 1.291043 30 1 38.32717 -1.214416 1252.621 7.132994 -.0461555 30 2 38.42574 -1.205792 1336.739 7.197988 .0228328 30 3 40.32307 -1.039784 1364.646 7.21865 .0447649 31 1 61.01848 .7709751 3693.907 8.21444 1.101748 31 2 61.09788 .7779219 2403.918 7.784855 .6457639 31 3 62.88022 .9338689 2713.854 7.906125 .7744858 32 1 41.01574 -.9791777 961.9236 6.868935 -.3264408 32 3 42.93224 -.8114926 970.1036 6.877403 -.3174528 33 1 45.69747 -.5695471 2891.598 7.969564 .8418236 34 1 58.38741 .5407673 320.4724 5.769796 -1.493123 35 1 60.10404 .6909652 1856.001 7.526179 .3711919 35 3 62.04791 .8610458 2768.73 7.926144 .7957351 36 1 53.71389 .1318553 474.4825 6.162225 -1.076579 36 3 55.82478 .3165483 . . . 37 1 51.8193 -.0339133 1838.434 7.516669 .3610975 37 2 51.8987 -.0269662 1921.465 7.560843 .4079862 37 3 53.68652 .1294599 1746.475 7.465354 .3066292 38 1 47.34565 -.4253381 3781.011 8.237747 1.126487 38 3 49.19644 -.2634021 5217.824 8.559835 1.468368 39 1 55.23888 .2652847 679.6987 6.521649 -.6950678 39 3 57.09788 .4279392 1089.775 6.993726 -.1939811 40 1 35.40041 -1.470495 896.2548 6.798225 -.4014963 40 2 35.54278 -1.458038 586.449 6.374085 -.8516997 40 3 37.33607 -1.301133 1021.051 6.928588 -.2631223 41 1 39.55921 -1.106618 368.7322 5.910071 -1.344229 41 3 41.32786 -.951869 535.7909 6.283744 -.9475929 42 1 60.6078 .7350425 1789.249 7.489551 .3323128 42 3 62.51335 .9017693 2892.144 7.969753 .842024 43 1 59.24162 .6155069 1746.482 7.465359 .3066338 44 1 30.62286 -1.88851 637.092 6.456914 -.7637812 44 3 32.42437 -1.730886 1029.267 6.936603 -.2546151 45 1 71.34566 1.674558 1317.176 7.183245 .007184 45 3 73.24572 1.840805 1756.601 7.471136 .3127657 46 1 61.20192 .7870247 4502.428 8.412373 1.311843 46 3 63.38398 .9779462 . . . 47 1 54.55989 .2058764 985.6336 6.893285 -.3005948 47 3 56.38877 .3658958 1167.249 7.062405 -.1210824 48 1 37.35524 -1.299456 836.8149 6.729603 -.4743353 48 2 37.50856 -1.286041 700.9619 6.552454 -.6623706 48 3 39.18686 -1.139197 1076.176 6.981169 -.2073098 49 1 61.37988 .8025954 2238.811 7.7137 .5702363 49 3 63.16222 .9585425 2805.524 7.939345 .8097475 50 1 29.91102 -1.950793 208.3546 5.339242 -1.950136 51 1 74.62012 1.96106 642.2728 6.465013 -.7551845 51 3 76.53936 2.128984 827.4002 6.718288 -.486345 52 1 40.91171 -.9882806 3684.903 8.212 1.099157 52 2 41.01574 -.9791777 2799.202 7.937089 .807353 52 3 42.7269 -.8294591 2748.359 7.918759 .7878965 53 1 49.06503 -.2749005 . . . 53 2 49.20465 -.2626835 2511.94 7.828811 .6924204 53 3 51.01711 -.1041013 2816.587 7.943281 .8139252 54 1 61.82615 .8416421 2151.537 7.673938 .5280303 54 3 63.86311 1.019867 4004.288 8.295121 1.187386 55 1 53.44011 .1079004 1482.352 7.301385 .1325836 55 3 55.34018 .2741483 1221.591 7.10791 -.072781 56 1 48.19712 -.350838 296.0346 5.690476 -1.577317 56 3 50.10267 -.1841112 249.9506 5.521263 -1.756929 57 1 52.52019 .0274115 312.5521 5.744771 -1.519686 57 3 54.39562 .1915033 312.1594 5.743514 -1.521021 58 1 37.36619 -1.298498 149.9367 5.010213 -2.299383 58 3 39.58385 -1.104462 227.4243 5.426817 -1.857179 59 1 58.4668 .5477144 1986.069 7.593913 .4430875 59 3 60.24093 .7029428 2215.075 7.703042 .5589225 60 1 58.60369 .5596917 3455.811 8.147813 1.031026 60 2 58.75428 .5728669 4436.277 8.397571 1.296131 60 3 60.37508 .7146806 5968.703 8.694284 1.611079 61 1 57.81793 .4909408 4408.998 8.391402 1.289584 61 3 59.76455 .6612611 3624.288 8.195413 1.08155 62 1 33.76318 -1.613746 434.4165 6.074004 -1.170222 62 3 35.75359 -1.439593 189.8028 5.245986 -2.049123 63 1 32.93634 -1.68609 1895.494 7.547235 .393541 63 3 34.90212 -1.514093 2302.848 7.741902 .6001709 64 1 71.40314 1.679588 2129.721 7.663746 .5172126 64 3 73.27036 1.842961 3397.844 8.130897 1.01307 65 1 59.86858 .670364 3434.66 8.141673 1.024509 65 2 59.94524 .6770714 2960.603 7.993148 .8668568 65 3 61.64819 .8260714 3520.905 8.166473 1.050833 66 1 67.41958 1.331043 1623.378 7.392264 .2290477 66 3 69.34976 1.499926 1408.739 7.250451 .0785193 67 1 56.45448 .371645 459.3684 6.129853 -1.110941 67 3 58.37645 .539809 832.9525 6.724977 -.4792458 68 1 54.00684 .1574872 574.4127 6.353348 -.8737112 68 2 54.09172 .1649132 539.5509 6.290737 -.9401698 68 3 55.75907 .3107992 724.6711 6.585718 -.6270624 69 1 55.14579 .25714 252.2744 5.530517 -1.747106 69 3 57.04038 .4229086 326.9581 5.789832 -1.471856 70 1 52.4846 .0242975 1324.438 7.188744 .0130203 71 1 34.77071 -1.525591 490.0402 6.194488 -1.042334 71 3 36.67625 -1.358864 848.3346 6.743275 -.4598227 72 1 66.90486 1.286008 2639.639 7.878397 .7450543 72 3 69.41547 1.505675 6615.416 8.797158 1.720274 73 1 33.54689 -1.63267 259.8163 5.559975 -1.715839 73 3 35.36756 -1.473369 206.8057 5.331779 -1.958057 74 1 59.96167 .6785086 1505.062 7.31659 .1487229 74 2 60.07392 .6883301 1182.27 7.075192 -.1075092 74 3 61.89185 .8473912 1906.976 7.553274 .3999512 75 1 43.16496 -.791131 188.5062 5.239131 -2.056399 75 3 45.10336 -.6215294 293.6805 5.682492 -1.585792 76 1 51.52088 -.0600241 723.2149 6.583706 -.6291972 76 3 53.3306 .0983185 781.8101 6.661612 -.5465042 77 1 70.04791 1.561011 3665.586 8.206743 1.093577 77 3 71.83573 1.717437 2136.27 7.666817 .5204716 78 1 33.69747 -1.619495 953.954 6.860615 -.335272 78 3 35.47433 -1.464027 1103.682 7.006407 -.1805208 79 1 25.90828 -2.301015 170.4778 5.138605 -2.163102 79 3 27.67146 -2.146745 749.5142 6.619425 -.5912834 80 1 52.64887 .0386706 655.5605 6.485491 -.7334483 80 3 54.41478 .1931801 822.2954 6.7121 -.4929141 end
Code:
gen dep_ln = ln(dep) egen dep_ln_z = std(dep_ln) egen indep_z = std(indep)
Code:
sum indep local min = round(r(min)) local max = round(r(max)) mixed dep_ln c.indep || id: local ca = _b[_cons] local cb = _b[indep] margins, at(indep=(`min'(0.1)`max')) post est store dep_ln_model coefplot /// (dep_ln_model, /// transform(*=exp(@)) /// recast(line) lc("154 149 148") /// title("Control") noci) /// , /// at /// xsc(range(20 80) titleg(3pt)) /// ysc(log range("100 10000") titleg(3pt)) /// xlab(20(10)80) /// ylab("100 1000 10000") /// xtitle("Independent") /// ytitle("Dependent") /// legend(off) /// plotregion(lstyle(none)) /// aspectratio(1) /// addplot( /// (function y = exp(`ca' + `cb'*x), /// range(20 80) /// lpattern(dash) lcolor("154 149 148")) /// (scatter dep indep if dep!=0, mcolor("154 149 148")) /// )
Code:
sum indep_z local min = round(r(min)) local max = round(r(max)) mixed dep_ln_z c.indep_z || id: local ca = _b[_cons] local cb = _b[indep_z] margins, at(indep_z=(`min'(0.1)`max')) post est store dep_ln_z_model sum dep local dep_mean = r(mean) local dep_sd = r(sd) coefplot /// (dep_ln_z_model, /// transform(*=exp((@*``nfltr'_sd')+``nfltr'_mean')) /// recast(line) lc("154 149 148") /// title("Control") noci) /// , /// at /// xsc(range(20 80) titleg(3pt)) /// ysc(log range("100 10000") titleg(3pt)) /// xlab(20(10)80) /// ylab("100 1000 10000") /// xtitle("Independent") /// ytitle("Dependent") /// legend(off) /// plotregion(lstyle(none)) /// aspectratio(1) /// addplot( /// (function y = exp(`ca' + `cb'*x), /// range(20 80) /// lpattern(dash) lcolor("154 149 148")) /// (scatter dep indep if dep!=0, mcolor("154 149 148")) /// )
Comment