I am running fixed effects with double clustered standard errors with reghdfe in StataNow 18.5. My unbalanced panel data has T=14, N=409.
When I check how many obs in each year is used for the regression, 2020-2022 are not included and the reason isn't explained in the regression results. I have almost no data for 2020, but 2021 and 2022 should be just like other periods and I have checked for the observations as coded below.
results:
Thanks in advance!
When I check how many obs in each year is used for the regression, 2020-2022 are not included and the reason isn't explained in the regression results. I have almost no data for 2020, but 2021 and 2022 should be just like other periods and I have checked for the observations as coded below.
Code:
. bysort year: count . reghdfe ln_homeless_nonvet_per10000_1 nonvet_black_rate nonvet_income median_rent_coc L1.own_vacancy_rate_coc L1.rent_vacancy_rate_coc nonvet_pov_rate L1.nonvet_ue_rate ssi_coc own_burden_rate_coc rent_burden_rate_coc L2.own_hpc L2.rent_hpc, absorb(coc_num year) vce(cluster coc_num year) . gen included = e(sample) . tab year if included
Code:
. bysort year: count --------------------------------------------------------------------------------------------------------------------- -> year = 2010 396 --------------------------------------------------------------------------------------------------------------------- -> year = 2011 398 --------------------------------------------------------------------------------------------------------------------- -> year = 2012 398 --------------------------------------------------------------------------------------------------------------------- -> year = 2013 398 --------------------------------------------------------------------------------------------------------------------- -> year = 2014 398 --------------------------------------------------------------------------------------------------------------------- -> year = 2015 398 --------------------------------------------------------------------------------------------------------------------- -> year = 2016 398 --------------------------------------------------------------------------------------------------------------------- -> year = 2017 399 --------------------------------------------------------------------------------------------------------------------- -> year = 2018 399 --------------------------------------------------------------------------------------------------------------------- -> year = 2019 402 --------------------------------------------------------------------------------------------------------------------- -> year = 2022 402 --------------------------------------------------------------------------------------------------------------------- -> year = 2023 401 . reghdfe ln_homeless_nonvet_per10000_1 nonvet_black_rate nonvet_income median_rent_coc L1.own_vacancy_rate_coc L1.re > nt_vacancy_rate_coc nonvet_pov_rate L1.nonvet_ue_rate ssi_coc own_burden_rate_coc rent_burden_rate_coc L2.own_hpc L > 2.rent_hpc, absorb(coc_num) vce(cluster coc_num year) (dropped 2 singleton observations) (MWFE estimator converged in 1 iterations) HDFE Linear regression Number of obs = 3,229 Absorbing 1 HDFE group F( 12, 8) = 7.64 Statistics robust to heteroskedasticity Prob > F = 0.0038 R-squared = 0.9463 Adj R-squared = 0.9393 Number of clusters (coc_num) = 361 Within R-sq. = 0.1273 Number of clusters (year) = 9 Root MSE = 0.2471 (Std. err. adjusted for 9 clusters in coc_num year) --------------------------------------------------------------------------------------- | Robust ln_homeless_nonvet_~1 | Coefficient std. err. t P>|t| [95% conf. interval] ----------------------+---------------------------------------------------------------- nonvet_black_rate | .5034405 .2295248 2.19 0.060 -.0258447 1.032726 nonvet_income | .0005253 .0002601 2.02 0.078 -.0000745 .0011252 median_rent_coc | 1.99e-06 9.68e-07 2.05 0.074 -2.47e-07 4.22e-06 | own_vacancy_rate_coc | L1. | 1.239503 2.30195 0.54 0.605 -4.068803 6.54781 | rent_vacancy_rate_coc | L1. | .3716792 .3719027 1.00 0.347 -.48593 1.229288 | nonvet_pov_rate | .6896438 .5059999 1.36 0.210 -.477194 1.856482 | nonvet_ue_rate | L1. | 3.195935 .8627162 3.70 0.006 1.206507 5.185362 | ssi_coc | -1.47e-06 3.58e-06 -0.41 0.692 -9.73e-06 6.79e-06 own_burden_rate_coc | -.1589565 .3308741 -0.48 0.644 -.9219535 .6040405 rent_burden_rate_coc | .3420483 .1330725 2.57 0.033 .0351825 .6489141 | own_hpc | L2. | .3028142 .1597655 1.90 0.095 -.0656058 .6712341 | rent_hpc | L2. | -.5586364 .2167202 -2.58 0.033 -1.058394 -.0588787 | _cons | 2.932302 .1263993 23.20 0.000 2.640824 3.223779 --------------------------------------------------------------------------------------- Absorbed degrees of freedom: -----------------------------------------------------+ Absorbed FE | Categories - Redundant = Num. Coefs | -------------+---------------------------------------| coc_num | 361 361 0 *| -----------------------------------------------------+ * = FE nested within cluster; treated as redundant for DoF computation . gen included = e(sample) . tab year if included year | Freq. Percent Cum. ------------+----------------------------------- 2012 | 356 11.03 11.03 2013 | 358 11.09 22.11 2014 | 359 11.12 33.23 2015 | 361 11.18 44.41 2016 | 360 11.15 55.56 2017 | 361 11.18 66.74 2018 | 361 11.18 77.92 2019 | 358 11.09 89.01 2023 | 355 10.99 100.00 ------------+----------------------------------- Total | 3,229 100.00
Comment