Hello everyone,
Based on the valuable advice I received from Professor Carlo Lazzaro in a previous discussion, I have refined my research and submitted it to an academic journal. I sincerely appreciate Professor Lazzaro’s guidance, which has been tremendously helpful in improving my work.
https://www.statalist.org/forums/for...ion-procedures
https://www.statalist.org/forums/for...ssion-analysis
The dependent variable is the budget growth rate of government R&D programs, while the independent variables include program evaluation grades (average, excellent, poor), Performance Measurement Appropriateness (PMA), and the interaction term between program evaluation grades and PMA.
The panel fixed-effects regression results yielded the following within R² values:
Model1 : Overall Program
Model2(Department : MSIT)
Model 3(Deprtment : MOTIE)
I have searched for relevant discussions on Statalist and found multiple threads explaining that the R² in a fixed-effects model refers to the within R². However, I could not find a clear consensus on what range of within R² is generally considered acceptable.
Could you kindly share insights on what range of within R² is typically acceptable in fixed-effects panel models?Specifically, are my within R² values (0.1701, 0.2884, 0.2858) reasonable in the context of panel data analysis? If there are any recommended references on this topic, I would greatly appreciate your suggestions.
Thank you very much for your time and help!
Based on the valuable advice I received from Professor Carlo Lazzaro in a previous discussion, I have refined my research and submitted it to an academic journal. I sincerely appreciate Professor Lazzaro’s guidance, which has been tremendously helpful in improving my work.
https://www.statalist.org/forums/for...ion-procedures
https://www.statalist.org/forums/for...ssion-analysis
The dependent variable is the budget growth rate of government R&D programs, while the independent variables include program evaluation grades (average, excellent, poor), Performance Measurement Appropriateness (PMA), and the interaction term between program evaluation grades and PMA.
The panel fixed-effects regression results yielded the following within R² values:
Code:
. xtreg Gbincreaset dum_Grade2 dum_Grade3 PMA interaction_Grade2_PMA interaction_Grade3_PMA dum_NationalProject2 BProportiont_1 dum_Congress2 dum_Congress3 dum_Scale2 ln_Period ln_realBUDGETt_1 i.YEAR, fe vce(cluster ID)
Code:
Fixed-effects (within) regression Number of obs = 860 Group variable: ID Number of groups = 95 R-squared: Obs per group: Within = 0.1701 min = 3 Between = 0.0106 avg = 9.1 Overall = 0.0128 max = 11 F(22, 94) = 6.12 corr(u_i, Xb) = -0.8797 Prob > F = 0.0000 (Std. err. adjusted for 95 clusters in ID) ---------------------------------------------------------------------------------------- | Robust Gbincreaset | Coefficient std. err. t P>|t| [95% conf. interval] -----------------------+---------------------------------------------------------------- dum_Grade2 | .0025008 .0210685 0.12 0.906 -.0393311 .0443328 dum_Grade3 | -.1265205 .0442847 -2.86 0.005 -.2144488 -.0385923 PMA | -.400207 .2124456 -1.88 0.063 -.8220226 .0216087 interaction_Grade2_PMA | .0676065 .0641698 1.05 0.295 -.0598041 .1950171 interaction_Grade3_PMA | -.2909324 .169415 -1.72 0.089 -.6273098 .045445 dum_NationalProject2 | .0208537 .025206 0.83 0.410 -.0291934 .0709008 BProportiont_1 | .1649261 .0595687 2.77 0.007 .046651 .2832012 dum_Congress2 | .021932 .0193291 1.13 0.259 -.0164463 .0603104 dum_Congress3 | -.0256428 .0214164 -1.20 0.234 -.0681656 .01688 dum_Scale2 | .1186718 .0536993 2.21 0.030 .0120506 .225293 ln_Period | -.0096512 .084944 -0.11 0.910 -.1783096 .1590072 ln_realBUDGETt_1 | -.1488883 .0399237 -3.73 0.000 -.2281578 -.0696188 | YEAR | 2015 | .064101 .0283541 2.26 0.026 .0078033 .1203987 2016 | .0502911 .0363819 1.38 0.170 -.021946 .1225281 2017 | .0178068 .0331164 0.54 0.592 -.0479466 .0835601 2018 | .0134901 .0392066 0.34 0.732 -.0643555 .0913356 2019 | .0364182 .0485554 0.75 0.455 -.0599896 .132826 2020 | .074119 .0547573 1.35 0.179 -.034603 .182841 2021 | .1087537 .0594412 1.83 0.070 -.0092682 .2267756 2022 | .0338457 .0637374 0.53 0.597 -.0927064 .1603977 2023 | .0092021 .0690746 0.13 0.894 -.1279471 .1463513 2024 | -.079715 .0713125 -1.12 0.266 -.2213076 .0618776 | _cons | .7804078 .2973636 2.62 0.010 .1899854 1.37083 -----------------------+---------------------------------------------------------------- sigma_u | .24078143 sigma_e | .1931013 rho | .60858051 (fraction of variance due to u_i) ----------------------------------------------------------------------------------------
Model2(Department : MSIT)
Code:
Fixed-effects (within) regression Number of obs = 284 Group variable: ID Number of groups = 29 R-squared: Obs per group: Within = 0.2884 min = 6 Between = 0.1156 avg = 9.8 Overall = 0.0004 max = 11 F(22, 28) = 49.84 corr(u_i, Xb) = -0.9607 Prob > F = 0.0000 (Std. err. adjusted for 29 clusters in ID) ---------------------------------------------------------------------------------------- | Robust Gbincreaset | Coefficient std. err. t P>|t| [95% conf. interval] -----------------------+---------------------------------------------------------------- dum_Grade2 | .0146971 .0341105 0.43 0.670 -.0551751 .0845694 dum_Grade3 | -.0262159 .0949068 -0.28 0.784 -.2206236 .1681918 PMA | -.7700591 .598621 -1.29 0.209 -1.996279 .4561604 interaction_Grade2_PMA | .0516906 .08433 0.61 0.545 -.1210515 .2244328 interaction_Grade3_PMA | -.050318 .3672456 -0.14 0.892 -.8025866 .7019505 dum_NationalProject2 | .042069 .0288556 1.46 0.156 -.0170389 .1011769 BProportiont_1 | .2932974 .1111382 2.64 0.013 .0656411 .5209536 dum_Congress2 | .0003401 .0309072 0.01 0.991 -.0629704 .0636506 dum_Congress3 | -.0729838 .0459666 -1.59 0.124 -.1671421 .0211745 dum_Scale2 | .1869602 .0808099 2.31 0.028 .0214287 .3524917 ln_Period | -.24902 .2212701 -1.13 0.270 -.7022712 .2042311 ln_realBUDGETt_1 | -.3046663 .0614343 -4.96 0.000 -.4305088 -.1788237 | YEAR | 2015 | .1142503 .0740903 1.54 0.134 -.0375168 .2660175 2016 | .1994159 .0813761 2.45 0.021 .0327246 .3661073 2017 | .1641194 .1036531 1.58 0.125 -.0482044 .3764432 2018 | .1158698 .1222286 0.95 0.351 -.1345041 .3662437 2019 | .2071422 .1230809 1.68 0.103 -.0449776 .459262 2020 | .2357455 .1617658 1.46 0.156 -.0956167 .5671077 2021 | .307164 .1437909 2.14 0.042 .0126216 .6017063 2022 | .2772618 .1672246 1.66 0.108 -.0652823 .6198059 2023 | .2929786 .1679828 1.74 0.092 -.0511186 .6370759 2024 | .1663899 .1717733 0.97 0.341 -.1854717 .5182515 | _cons | 1.988337 .5953076 3.34 0.002 .7689049 3.20777 -----------------------+---------------------------------------------------------------- sigma_u | .51847783 sigma_e | .20567156 rho | .86403708 (fraction of variance due to u_i) ----------------------------------------------------------------------------------------
Code:
Fixed-effects (within) regression Number of obs = 224 Group variable: ID Number of groups = 24 R-squared: Obs per group: Within = 0.2858 min = 5 Between = 0.0353 avg = 9.3 Overall = 0.0199 max = 11 F(22, 23) = 143.70 corr(u_i, Xb) = -0.8989 Prob > F = 0.0000 (Std. err. adjusted for 24 clusters in ID) ---------------------------------------------------------------------------------------- | Robust Gbincreaset | Coefficient std. err. t P>|t| [95% conf. interval] -----------------------+---------------------------------------------------------------- dum_Grade2 | -.0040038 .0498117 -0.08 0.937 -.1070472 .0990395 dum_Grade3 | -.2060176 .0228124 -9.03 0.000 -.2532086 -.1588265 PMA | -1.102502 .362825 -3.04 0.006 -1.853062 -.3519409 interaction_Grade2_PMA | .2784458 .2270171 1.23 0.232 -.1911748 .7480664 interaction_Grade3_PMA | -.2284704 .1077059 -2.12 0.045 -.451277 -.0056638 dum_NationalProject2 | .0794018 .0550323 1.44 0.163 -.0344412 .1932447 BProportiont_1 | .018985 .0640657 0.30 0.770 -.1135451 .1515151 dum_Congress2 | .04456 .0345698 1.29 0.210 -.0269531 .1160732 dum_Congress3 | -.0483268 .0290808 -1.66 0.110 -.108485 .0118315 dum_Scale2 | .0149386 .0401202 0.37 0.713 -.0680563 .0979335 ln_Period | -.2137149 .1050459 -2.03 0.054 -.4310189 .003589 ln_realBUDGETt_1 | -.0837218 .0510144 -1.64 0.114 -.1892532 .0218096 | YEAR | 2015 | .0881138 .0457769 1.92 0.067 -.0065829 .1828106 2016 | -.0021486 .0463278 -0.05 0.963 -.097985 .0936878 2017 | .032101 .0573949 0.56 0.581 -.0866295 .1508314 2018 | .0556201 .0706875 0.79 0.439 -.0906082 .2018483 2019 | .1412439 .07652 1.85 0.078 -.0170498 .2995376 2020 | .2123569 .0820638 2.59 0.016 .0425951 .3821187 2021 | .173264 .0876465 1.98 0.060 -.0080467 .3545746 2022 | .0832085 .0957713 0.87 0.394 -.1149096 .2813265 2023 | .099512 .1021161 0.97 0.340 -.1117313 .3107553 2024 | .0274431 .1289697 0.21 0.833 -.239351 .2942372 | _cons | 1.725018 .4687378 3.68 0.001 .7553602 2.694676 -----------------------+---------------------------------------------------------------- sigma_u | .30347756 sigma_e | .18860531 rho | .72137702 (fraction of variance due to u_i) ----------------------------------------------------------------------------------------
- Model 1: 0.1701
- Model 2: 0.2884
- Model 3: 0.2858
I have searched for relevant discussions on Statalist and found multiple threads explaining that the R² in a fixed-effects model refers to the within R². However, I could not find a clear consensus on what range of within R² is generally considered acceptable.
Could you kindly share insights on what range of within R² is typically acceptable in fixed-effects panel models?Specifically, are my within R² values (0.1701, 0.2884, 0.2858) reasonable in the context of panel data analysis? If there are any recommended references on this topic, I would greatly appreciate your suggestions.
Thank you very much for your time and help!
Comment