Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Label define where labels differ for same values of a variable by group

    Dear all,

    I want rel_year_nonneg to have labels as the values of display_rel_year_nonneg, which labmask is unable to do.

    Basically, I want labels of rel_year_nonng to differ by cohort.

    I can't use "if" condition in label define.

    So, I create the a new variable as display_rel_year_nonneg as follows. However, labmask doesn't work in this case since display_rel_year_nonneg not constant within groups of rel_year_nonneg.

    Code:
    * Recode rel_year to be non-negative
    gen rel_year_nonneg = .
    replace rel_year_nonneg = rel_year + 2 if cohort == 2012
    replace rel_year_nonneg = rel_year + 3 if cohort == 2013
    
    
    * Create a helper variable for correct labeling in graphs and tables
    gen display_rel_year_nonneg = ""
    replace display_rel_year_nonneg = "-2" if rel_year_nonneg == 0 & cohort == 2012
    replace display_rel_year_nonneg = "-1" if rel_year_nonneg == 1 & cohort == 2012
    replace display_rel_year_nonneg = "0" if rel_year_nonneg == 2 & cohort == 2012
    replace display_rel_year_nonneg = "1" if rel_year_nonneg == 3 & cohort == 2012
    replace display_rel_year_nonneg = "2" if rel_year_nonneg == 4 & cohort == 2012
    replace display_rel_year_nonneg = "3" if rel_year_nonneg == 5 & cohort == 2012
    
    
    replace display_rel_year_nonneg = "-3" if rel_year_nonneg == 0 & cohort == 2013
    replace display_rel_year_nonneg = "-2" if rel_year_nonneg == 1 & cohort == 2013
    replace display_rel_year_nonneg = "-1" if rel_year_nonneg == 2 & cohort == 2013
    replace display_rel_year_nonneg = "0" if rel_year_nonneg == 3 & cohort == 2013
    replace display_rel_year_nonneg = "1" if rel_year_nonneg == 4 & cohort == 2013
    replace display_rel_year_nonneg = "2" if rel_year_nonneg == 5 & cohort == 2013
    
    
    . labmask rel_year_nonneg, values(display_rel_year_nonneg)
    display_rel_year_nonneg not constant within groups of rel_year_nonneg
    r(198);
    
    end of do-file
    I appreciate your help. Thanks.

  • #2
    labmask (probably from SJ, perhaps from SSC) imposes no restriction beyond those of label define and the general concept of value labels. You cannot map the same integer to different text (strings). You need a fundamentally different approach. I would set up a reproducible example demonstrating how you create the graph and then explain what you want to change about it.

    Comment


    • #3
      I write as the author of labmask. As daniel klein implies, it can be found to be documented at

      Code:
      SJ-8-2  gr0034  . . . . . . . . . .  Speaking Stata: Between tables and graphs
              (help labmask, seqvar if installed) . . . . . . . . . . . .  N. J. Cox
              Q2/08   SJ 8(2):269--289
              outlines techniques for producing table-like graphs
      and also on SSC as part of the labutil package. It is required for some other commands to work. I would prefer that people give the Stata Journal reference.

      So far, that is just a small question of how to explain community-contributed commands you refer to, following our longstanding request at https://www.statalist.org/forums/help#stata 12.1

      Simply and fundamentally, I can only echo Daniel's explanation: value labels correspond one to one with values of a variable once a set of value labels has been defined and associated with a variable with integer values. Nothing that labmask or any other command can do can in any sense undermine or work around that definition. That is not a matter of labmask "not working" but a matter of it following the rules.

      What you can do is create different variables using say separate and then define and assign different value labels for each variable. But again with a data example and more explanation, a simpler way of doing what you want may became clear.

      Comment


      • #4
        Looking at your code again and trying to get some sense of what you're doing.

        You have cohorts for 2012 and 2013 and perhaps other years. So variables that code time before or after some origin could be got more directly by something like

        Code:
        * Recode rel_year to be non-negative
        gen rel_year_nonneg = rel_year + cond(cohort == 2012, 2, cond(cohort == 2013, 3, .))  
        
        * Create a helper variable for correct labeling in graphs and tables
        gen display_rel_year_nonneg = . 
        replace display_rel_year_nonneg = rel_year_nonneg - 2 if cohort == 2012
        replace display_rel_year_nonneg = rel_year_nonneg - 3 if cohort == 2013
        For the second block of code, I can't imagine any advantage in creating a string variable, even if you want value labels as the next step.

        Comment


        • #5
          Hi Daniel and Nick for your helpful responses.

          Nick, you are right. The sample is from 2010 to 2019 with the following cohorts:

          Code:
          . fre cohort
          
          cohort
          -----------------------------------------------------------------------
                                    |      Freq.    Percent      Valid       Cum.
          --------------------------+--------------------------------------------
          Valid   0    Never treted |      11250      49.33      49.33      49.33
                  2012              |       1210       5.31       5.31      54.64
                  2013              |       1310       5.74       5.74      60.38
                  2014              |       1710       7.50       7.50      67.88
                  2015              |       2040       8.95       8.95      76.83
                  2016              |       3224      14.14      14.14      90.97
                  2017              |       2060       9.03       9.03     100.00
                  Total             |      22804     100.00     100.00           
          -----------------------------------------------------------------------
          This is an example:

          Code:
          * Example generated by -dataex-. For more info, type help dataex
          clear
          input float(cohort year rel_year) long countyfips
          2016 2012 -4 2290
          2016 2013 -3 2290
          2016 2014 -2 2290
          2016 2015 -1 2290
          2016 2016  0 2290
          2016 2017  1 2290
          2016 2018  2 2290
          2016 2019  3 2290
          2013 2010 -3 4001
          2013 2011 -2 4001
          2013 2012 -1 4001
          2013 2013  0 4001
          2013 2014  1 4001
          2013 2015  2 4001
          2013 2016  3 4001
          2013 2017  4 4001
          2013 2018  5 4001
          2013 2019  6 4001
          2013 2010 -3 4003
          2013 2011 -2 4003
          2013 2012 -1 4003
          2013 2013  0 4003
          2013 2014  1 4003
          2013 2015  2 4003
          2013 2016  3 4003
          2013 2017  4 4003
          2013 2018  5 4003
          2013 2019  6 4003
          2013 2010 -3 4005
          2013 2011 -2 4005
          2013 2012 -1 4005
          2013 2013  0 4005
          2013 2014  1 4005
          2013 2015  2 4005
          2013 2016  3 4005
          2013 2017  4 4005
          2013 2018  5 4005
          2013 2019  6 4005
          2013 2010 -3 4007
          2013 2011 -2 4007
          2013 2012 -1 4007
          2013 2013  0 4007
          2013 2014  1 4007
          2013 2015  2 4007
          2013 2016  3 4007
          2013 2017  4 4007
          2013 2018  5 4007
          2013 2019  6 4007
          2013 2010 -3 4009
          2013 2011 -2 4009
          2013 2012 -1 4009
          2013 2013  0 4009
          2013 2014  1 4009
          2013 2015  2 4009
          2013 2016  3 4009
          2013 2017  4 4009
          2013 2018  5 4009
          2013 2019  6 4009
          2013 2010 -3 4011
          2013 2011 -2 4011
          2013 2012 -1 4011
          end
          label values cohort cohort
          Are you suggesting that instead of labelling rel_year_nonneg according to different cohorts, use the rel_year_nonneg as it is and then use the variable directly in the graph by doing something like:
          Code:
          levelsof display_rel_year_nonneg, local(labels)
          local xlabels
          foreach level of local labels {
              local xlabels `xlabels' `level' "`level'"
          }
          And then in coefplot, using:
          Code:
             xlabel(`xlabels', angle(0)) ///
          ?

          Thank you.

          Comment


          • #6
            I am not suggesting anything yet, as I don't understand what you want to do.

            First off, I repeat a key detail from earlier in the thread. You should explain community-contributed commands you refer to, following our longstanding request at https://www.statalist.org/forums/help#stata 12.1

            Here fre and coefplot are community-contributed.

            You evidently want to use coefplot for some purpose, but I can't follow what that is.

            Comment


            • #7
              Nick Cox Hi Nick, sorry for failing to acknowledge the use of community contributed commands earlier.

              As per the request request at https://www.statalist.org/forums/help#stata 12.1, I am using using communty contributed command- coefpplot- to plot coefficients of interactions of treatment with rel_year to get event study for each treatment type. For estimaiton, I use another community contributed command: reghdfe. Earlier, I also used: fre - a community contributed command to show my cohorts. I am using Stata 18.

              I want to do something like:

              Code:
              *******
              eststo a1: reghdfe medcosts paypar#i.rel_year_nonneg pfdp#i.rel_year_nonneg pfdc#i.rel_year_nonneg ppdp#i.rel_year_nonneg ppdc#i.rel_year_nonneg pcdp#i.rel_year_nonneg pcdc#i.rel_year_nonneg pfonly#i.rel_year_nonneg pponly#i.rel_year_nonneg pconly#i.rel_year_nonneg dponly#i.rel_year_nonneg dconly#i.rel_year_nonneg i.rel_year_nonneg pfdp pfdc ppdp ppdc pcdp pcdc pfonly pponly pconly dponly dconly bbdT1std atet_imlcc logpop logMedianIncome logstramccost logpercentpov logUnemploymentRate16 logW, absorb(countyfips year) vce(cluster statefips)
              
              local variables paypar pfdc ppdp ppdc pcdp pponly pconly dconly
              local glist ""
              
              foreach var in `variables' {
              
                  local varlabel : variable label `var'
                  di "`var': `varlabel'"
              
                  local newvarlabel = subinstr("`varlabel'", "(sum) ", "", .)
              
                  local `var' 1.`var'#0.rel_year_nonneg ///
                                1.`var'#1.rel_year_nonneg ///
                                1.`var'#2.rel_year_nonneg ///
                                1.`var'#3.rel_year_nonneg ///
                                1.`var'#4.rel_year_nonneg ///
                                1.`var'#5.rel_year_nonneg ///
                                1.`var'#6.rel_year_nonneg ///
                                1.`var'#7.rel_year_nonneg ///
                                1.`var'#8.rel_year_nonneg ///
                                1.`var'#9.rel_year_nonneg
                  coefplot a1, keep(``var'') yline(0) ciopts(recast(rcap)) citop vertical mcolor(maroon) ///
                  title("`newvarlabel'", size(medium)) ///
                  ylabel(, angle(0)) ///
                  xlabel(`xlabels', angle(0)) ///
                  xtitle("Relative Years", size(medium))
              
                  graph save `var'_graph.gph, replace
              
                  local glist "`glist' `var'_graph.gph"
              }
              
              graph combine `glist', xsize(8) ysize(5)
              The aim is to plot event study for each treatment type. paypar is main treatment indicator.
              Code:
               
              Treat type///////////////Cohort Never treated 2012 2013 2014 2015 2017 2017
              Never Treated 1 0 0 0 0 0 0
              pfdc 0 0 1 0 0 1 0
              ppdp 0 0 0 0 0 1 0
              ppdc 0 0 1 0 0 1 0
              pcdp 0 0 0 0 0 0 1
              pp only 0 0 0 0 1 0 1
              pc only 0 0 0 0 1 0 0
              cc only 0 0 1 1 1 1 0
              paypar 0 1 1 1 1 1 1
              Last edited by Lars Pete; 22 Feb 2025, 15:36.

              Comment


              • #8
                Thanks for the extra detail, but sorry, I can't add helpfully. Your code doesn't provide a self-contained reproducible example, I am not familiar with key commands that you use, and I can't follow what you want. It seems quite likely that you have a soluble problem, but I can't work out what it is, and so leave this thread open for others (as it always was).

                Comment


                • #9
                  Hi Nick Cox,

                  Thanks for your input. Please allow me to try to provide a self-contained reproducible example, for you as well as others:

                  I will exclude the additional controls for simplicity.

                  This is the specification that I am trying to run. Using community contributed command ``reghdfe"

                  Code:
                  xtset countyfips year  
                   reghdfe thpv atet_paypar atet_pfdp atet_pfdc atet_ppdp atet_ppdc atet_pcdp atet_pcdc atet_pfonly atet_pponly atet_pconly atet_dponly atet_dconly pfdp pfdc ppdp ppdc pcdp pcdc pfonly pponly pconly dponly dconly bbdT1std logpop, a(countyfips year) vce(cluster statefips)
                  which give me ATT for each of the treatment types: paypar pfdc ppdp ppdc pcdp pponly pconly dconly.

                  atet_`var' is generated as:

                  Code:
                  foreach var of local treatments {
                      gen atet_`var' = (year >= cohort & `var' == 1)
                  }
                  I wish to produce an event study for each treatment type for phsr.

                  So, I wanted to interact each treatment `var' with i.rel_year to get the event study plot:

                  Code:
                  reghdfe thpv paypar#i.rel_year pfdp#i.rel_year pfdc#i.rel_year ppdp#i.rel_year ppdc#i.rel_year pcdp#i.rel_year pcdc#i.rel_year pfonly#i.rel_year pponly#i.rel_year pconly#i.rel_year dponly#i.rel_year dconly#i.rel_year bbdT1std logpop, a(countyfips year) vce(cluster statefips)
                  I tried to create rel_year_nonneg since factor interactions don't allow negative values.

                  Here is an example of the dataset generated using dataex:

                  Code:
                  * Example generated by -dataex-. For more info, type help dataex
                  clear
                  input long thpv float(paypar pfdc ppdp ppdc pcdp pponly pconly dconly yrtreat cohort rel_year) double statefips long countyfips float(year atet_paypar atet_pfdc atet_ppdp atet_ppdc atet_pcdp atet_pponly atet_pconly atet_dconly bbdT1std logpop)
                   776446 1 0 0 0 0 0 0 0 2016 2016 -1  9  9011 2015 0 0 0 0 0 0 0 0   .5968579 12.508478
                   861169 1 0 0 0 0 0 0 0 2016 2016  0  9  9011 2016 1 0 0 0 0 0 0 0    .599049 12.505377
                   819500 1 0 0 0 0 0 0 0 2016 2016  1  9  9011 2017 1 0 0 0 0 0 0 0   .6106076  12.50259
                   830395 1 0 0 0 0 0 0 0 2016 2016  2  9  9011 2018 1 0 0 0 0 0 0 0   .6123917 12.494195
                   519495 1 0 0 0 0 0 0 0 2016 2016  3  9  9011 2019 1 0 0 0 0 0 0 0   .8453003 12.488262
                   233122 1 0 0 0 0 0 0 0 2016 2016 -6  9  9013 2010 0 0 0 0 0 0 0 0  .14903036 11.936172
                   213128 1 0 0 0 0 0 0 0 2016 2016 -5  9  9013 2011 0 0 0 0 0 0 0 0  .14971557  11.93538
                   246739 1 0 0 0 0 0 0 0 2016 2016 -4  9  9013 2012 0 0 0 0 0 0 0 0  .15154384 11.928228
                   261170 1 0 0 0 0 0 0 0 2016 2016 -3  9  9013 2013 0 0 0 0 0 0 0 0  .15263605 11.927403
                   257132 1 0 0 0 0 0 0 0 2016 2016 -2  9  9013 2014 0 0 0 0 0 0 0 0  .15331204  11.92659
                   268154 1 0 0 0 0 0 0 0 2016 2016 -1  9  9013 2015 0 0 0 0 0 0 0 0  .27024326   11.9261
                   213052 1 0 0 0 0 0 0 0 2016 2016  0  9  9013 2016 1 0 0 0 0 0 0 0  .27316388  11.92235
                   199772 1 0 0 0 0 0 0 0 2016 2016  1  9  9013 2017 1 0 0 0 0 0 0 0   .2815094 11.928083
                   199790 1 0 0 0 0 0 0 0 2016 2016  2  9  9013 2018 1 0 0 0 0 0 0 0   .2845484 11.924512
                   416343 1 0 0 0 0 0 0 0 2016 2016  3  9  9013 2019 1 0 0 0 0 0 0 0  .28758734 11.923185
                   421710 1 0 0 0 0 0 0 0 2016 2016 -6  9  9015 2010 0 0 0 0 0 0 0 0  .06751796  11.68206
                   365177 1 0 0 0 0 0 0 0 2016 2016 -5  9  9015 2011 0 0 0 0 0 0 0 0  .06822194  11.68064
                   398548 1 0 0 0 0 0 0 0 2016 2016 -4  9  9015 2012 0 0 0 0 0 0 0 0  .06820164 11.676998
                   356734 1 0 0 0 0 0 0 0 2016 2016 -3  9  9015 2013 0 0 0 0 0 0 0 0  .06815519  11.67422
                   291219 1 0 0 0 0 0 0 0 2016 2016 -2  9  9015 2014 0 0 0 0 0 0 0 0  .06814709 11.667825
                   779445 1 0 0 0 0 0 0 0 2016 2016 -1  9  9015 2015 0 0 0 0 0 0 0 0  .06822619 11.665217
                   793387 1 0 0 0 0 0 0 0 2016 2016  0  9  9015 2016 1 0 0 0 0 0 0 0 .068179734 11.661578
                   751004 1 0 0 0 0 0 0 0 2016 2016  1  9  9015 2017 1 0 0 0 0 0 0 0  .07270537 11.664435
                   277926 1 0 0 0 0 0 0 0 2016 2016  2  9  9015 2018 1 0 0 0 0 0 0 0  .07343097 11.670152
                   267766 1 0 0 0 0 0 0 0 2016 2016  3  9  9015 2019 1 0 0 0 0 0 0 0  .07415653 11.668064
                   442726 1 0 1 0 0 0 0 0 2016 2016 -6 10 10001 2010 0 0 0 0 0 0 0 0   .1979445 11.997263
                   479896 1 0 1 0 0 0 0 0 2016 2016 -5 10 10001 2011 0 0 0 0 0 0 0 0  .20274556 12.011127
                   566630 1 0 1 0 0 0 0 0 2016 2016 -4 10 10001 2012 0 0 0 0 0 0 0 0  .20651238 12.025282
                   576451 1 0 1 0 0 0 0 0 2016 2016 -3 10 10001 2013 0 0 0 0 0 0 0 0    .211773 12.036322
                   590834 1 0 1 0 0 0 0 0 2016 2016 -2 10 10001 2014 0 0 0 0 0 0 0 0   .2173106  12.05098
                   620632 1 0 1 0 0 0 0 0 2016 2016 -1 10 10001 2015 0 0 0 0 0 0 0 0  .22382417  12.06019
                   626205 1 0 1 0 0 0 0 0 2016 2016  0 10 10001 2016 1 0 1 0 0 0 0 0  .23101535  12.06765
                   582625 1 0 1 0 0 0 0 0 2016 2016  1 10 10001 2017 1 0 1 0 0 0 0 0  .24679697 12.082905
                   606637 1 0 1 0 0 0 0 0 2016 2016  2 10 10001 2018 1 0 1 0 0 0 0 0   .2582541 12.092618
                   627597 1 0 1 0 0 0 0 0 2016 2016  3 10 10001 2019 1 0 1 0 0 0 0 0  .26971123  12.10506
                  1048604 1 0 1 0 0 0 0 0 2016 2016 -6 10 10003 2010 0 0 0 0 0 0 0 0  1.3984373 13.196504
                  1087700 1 0 1 0 0 0 0 0 2016 2016 -5 10 10003 2011 0 0 0 0 0 0 0 0  1.4008727  13.20275
                  1315554 1 0 1 0 0 0 0 0 2016 2016 -4 10 10003 2012 0 0 0 0 0 0 0 0  1.4032295 13.209614
                  1220167 1 0 1 0 0 0 0 0 2016 2016 -3 10 10003 2013 0 0 0 0 0 0 0 0   1.409748  13.21597
                  1257082 1 0 1 0 0 0 0 0 2016 2016 -2 10 10003 2014 0 0 0 0 0 0 0 0  1.4182273  13.22097
                  1339643 1 0 1 0 0 0 0 0 2016 2016 -1 10 10003 2015 0 0 0 0 0 0 0 0  1.4303068   13.2262
                  1388254 1 0 1 0 0 0 0 0 2016 2016  0 10 10003 2016 1 0 1 0 0 0 0 0  1.8787745  13.22948
                  1353205 1 0 1 0 0 0 0 0 2016 2016  1 10 10003 2017 1 0 1 0 0 0 0 0   1.882569  13.23532
                  1308996 1 0 1 0 0 0 0 0 2016 2016  2 10 10003 2018 1 0 1 0 0 0 0 0  1.8949186 13.234504
                  1290841 1 0 1 0 0 0 0 0 2016 2016  3 10 10003 2019 1 0 1 0 0 0 0 0   1.907268 13.233462
                   539061 1 0 1 0 0 0 0 0 2016 2016 -6 10 10005 2010 0 0 0 0 0 0 0 0   .1916036 12.191695
                   567746 1 0 1 0 0 0 0 0 2016 2016 -5 10 10005 2011 0 0 0 0 0 0 0 0  .19672586   12.2041
                   611380 1 0 1 0 0 0 0 0 2016 2016 -4 10 10005 2012 0 0 0 0 0 0 0 0   .2019925  12.21888
                   612391 1 0 1 0 0 0 0 0 2016 2016 -3 10 10005 2013 0 0 0 0 0 0 0 0   .2093621 12.233984
                   585033 1 0 1 0 0 0 0 0 2016 2016 -2 10 10005 2014 0 0 0 0 0 0 0 0   .2187953 12.254653
                   641854 1 0 1 0 0 0 0 0 2016 2016 -1 10 10005 2015 0 0 0 0 0 0 0 0   .4064615 12.276633
                   540390 1 0 1 0 0 0 0 0 2016 2016  0 10 10005 2016 1 0 1 0 0 0 0 0   .4195234 12.299003
                   519547 1 0 1 0 0 0 0 0 2016 2016  1 10 10005 2017 1 0 1 0 0 0 0 0  .44898435 12.325126
                   551036 1 0 1 0 0 0 0 0 2016 2016  2 10 10005 2018 1 0 1 0 0 0 0 0   .4677485 12.342682
                   592776 1 0 1 0 0 0 0 0 2016 2016  3 10 10005 2019 1 0 1 0 0 0 0 0   .4865126 12.364017
                  2924649 1 0 0 0 0 0 0 1 2013 2013 -3 11 11001 2010 0 0 0 0 0 0 0 0   1.938559 13.307552
                  3117944 1 0 0 0 0 0 0 1 2013 2013 -2 11 11001 2011 0 0 0 0 0 0 0 0   1.938494 13.332265
                  3118172 1 0 0 0 0 0 0 1 2013 2013 -1 11 11001 2012 0 0 0 0 0 0 0 0  1.9671515   13.3562
                  3323737 1 0 0 0 0 0 0 1 2013 2013  0 11 11001 2013 1 0 0 0 0 0 0 1  1.9908676  13.37789
                  3395032 1 0 0 0 0 0 0 1 2013 2013  1 11 11001 2014 1 0 0 0 0 0 0 1   2.009736 13.393097
                  3504760 1 0 0 0 0 0 0 1 2013 2013  2 11 11001 2015 1 0 0 0 0 0 0 1  2.0357604  13.41033
                  3203978 1 0 0 0 0 0 0 1 2013 2013  3 11 11001 2016 1 0 0 0 0 0 0 1  2.0677426 13.426203
                  3127250 1 0 0 0 0 0 0 1 2013 2013  4 11 11001 2017 1 0 0 0 0 0 0 1  2.0771666 13.450056
                  3418858 1 0 0 0 0 0 0 1 2013 2013  5 11 11001 2018 1 0 0 0 0 0 0 1   2.113357 13.462186
                  3615449 1 0 0 0 0 0 0 1 2013 2013  6 11 11001 2019 1 0 0 0 0 0 0 1  2.1495476  13.46699
                  1362687 0 0 0 0 0 0 0 0    .    0  . 12 12001 2010 0 0 0 0 0 0 0 0  .53723234 12.418503
                  1388962 0 0 0 0 0 0 0 0    .    0  . 12 12001 2011 0 0 0 0 0 0 0 0  .53861946 12.426938
                  1452457 0 0 0 0 0 0 0 0    .    0  . 12 12001 2012 0 0 0 0 0 0 0 0   .5400068 12.434387
                  1680573 0 0 0 0 0 0 0 0    .    0  . 12 12001 2013 0 0 0 0 0 0 0 0  .54255617 12.438557
                  1905455 0 0 0 0 0 0 0 0    .    0  . 12 12001 2014 0 0 0 0 0 0 0 0   .5465304 12.450942
                  2776831 0 0 0 0 0 0 0 0    .    0  . 12 12001 2015 0 0 0 0 0 0 0 0   .5506309 12.464958
                  2594392 0 0 0 0 0 0 0 0    .    0  . 12 12001 2016 0 0 0 0 0 0 0 0   .5578689 12.480677
                  2844522 0 0 0 0 0 0 0 0    .    0  . 12 12001 2017 0 0 0 0 0 0 0 0   .5691513  12.49476
                  1445744 0 0 0 0 0 0 0 0    .    0  . 12 12001 2018 0 0 0 0 0 0 0 0   .5843479 12.505962
                  2576393 0 0 0 0 0 0 0 0    .    0  . 12 12001 2019 0 0 0 0 0 0 0 0   .5995446 12.502626
                    29755 0 0 0 0 0 0 0 0    .    0  . 12 12003 2010 0 0 0 0 0 0 0 0  -.2548468 10.207843
                    29576 0 0 0 0 0 0 0 0    .    0  . 12 12003 2011 0 0 0 0 0 0 0 0 -.25497955 10.207584
                    27521 0 0 0 0 0 0 0 0    .    0  . 12 12003 2012 0 0 0 0 0 0 0 0  -.2551129  10.20692
                    29360 0 0 0 0 0 0 0 0    .    0  . 12 12003 2013 0 0 0 0 0 0 0 0 -.25524822 10.204925
                    31475 0 0 0 0 0 0 0 0    .    0  . 12 12003 2014 0 0 0 0 0 0 0 0 -.25521025 10.210163
                    32020 0 0 0 0 0 0 0 0    .    0  . 12 12003 2015 0 0 0 0 0 0 0 0 -.25519297 10.220376
                    32283 0 0 0 0 0 0 0 0    .    0  . 12 12003 2016 0 0 0 0 0 0 0 0 -.23681693 10.238923
                    31946 0 0 0 0 0 0 0 0    .    0  . 12 12003 2017 0 0 0 0 0 0 0 0 -.23440316 10.250016
                    32602 0 0 0 0 0 0 0 0    .    0  . 12 12003 2018 0 0 0 0 0 0 0 0   -.233249  10.25256
                    38478 0 0 0 0 0 0 0 0    .    0  . 12 12003 2019 0 0 0 0 0 0 0 0 -.23209484 10.282198
                   354694 0 0 0 0 0 0 0 0    .    0  . 12 12005 2010 0 0 0 0 0 0 0 0  .12248213 12.036777
                   312136 0 0 0 0 0 0 0 0    .    0  . 12 12005 2011 0 0 0 0 0 0 0 0  .12266454 12.039085
                   300137 0 0 0 0 0 0 0 0    .    0  . 12 12005 2012 0 0 0 0 0 0 0 0   .1231056  12.05302
                   299561 0 0 0 0 0 0 0 0    .    0  . 12 12005 2013 0 0 0 0 0 0 0 0  .12402184 12.070155
                   342927 0 0 0 0 0 0 0 0    .    0  . 12 12005 2014 0 0 0 0 0 0 0 0  .27104497  12.09208
                   347354 0 0 0 0 0 0 0 0    .    0  . 12 12005 2015 0 0 0 0 0 0 0 0  .27345794 12.109132
                   275594 0 0 0 0 0 0 0 0    .    0  . 12 12005 2016 0 0 0 0 0 0 0 0   .2778051 12.120308
                   268667 0 0 0 0 0 0 0 0    .    0  . 12 12005 2017 0 0 0 0 0 0 0 0   .2874613 12.120314
                   267926 0 0 0 0 0 0 0 0    .    0  . 12 12005 2018 0 0 0 0 0 0 0 0  .29713088  12.12963
                   265139 0 0 0 0 0 0 0 0    .    0  . 12 12005 2019 0 0 0 0 0 0 0 0   .3068004 12.070854
                    58225 0 0 0 0 0 0 0 0    .    0  . 12 12007 2010 0 0 0 0 0 0 0 0 -.25037575  10.25836
                    54847 0 0 0 0 0 0 0 0    .    0  . 12 12007 2011 0 0 0 0 0 0 0 0 -.25049835 10.256746
                    49735 0 0 0 0 0 0 0 0    .    0  . 12 12007 2012 0 0 0 0 0 0 0 0 -.25068903 10.208174
                    52632 0 0 0 0 0 0 0 0    .    0  . 12 12007 2013 0 0 0 0 0 0 0 0 -.25082248  10.19962
                    56088 0 0 0 0 0 0 0 0    .    0  . 12 12007 2014 0 0 0 0 0 0 0 0  -.2509296 10.191107
                  end
                  label values paypar paypar
                  label def paypar 0 "Never Treated", modify
                  label def paypar 1 "Treated", modify
                  label values cohort cohort
                  label def cohort 0 "Never treted", modify
                  [/CODE]
                  [/CODE]
                  Last edited by Lars Pete; 23 Feb 2025, 12:14.

                  Comment

                  Working...
                  X