I have 4 treatments and the count of 3 possible complications with no censored data, and I have used Cox regression to investigate the effect of the complications on the treatment time.
My concern is that the complications are counts, and c2 and c3 have a large number of 0s. Do I need to allow for this in the regression, if so how, or do I just include them as I have done.
Thank you,
Julie
------------------ copy up to and including the previous line ------------------
Code:
. stset et Survival-time data settings Failure event: (assumed to fail at time=et) Observed time interval: (0, et] Exit on or before: failure -------------------------------------------------------------------------- 96 total observations 0 exclusions -------------------------------------------------------------------------- 96 observations remaining, representing 96 failures in single-record/single-failure data 46,172 total analysis time at risk and under observation At risk from t = 0 Earliest observed entry t = 0 Last observed exit t = 1,060 . stcox i.trt c.c1 c.c2 c.c3 Failure _d: 1 (meaning all fail) Analysis time _t: et Iteration 0: Log likelihood = -345.60672 Iteration 1: Log likelihood = -262.44595 Iteration 2: Log likelihood = -251.05725 Iteration 3: Log likelihood = -250.60846 Iteration 4: Log likelihood = -250.60707 Refining estimates: Iteration 0: Log likelihood = -250.60707 Cox regression with Breslow method for ties No. of subjects = 96 Number of obs = 96 No. of failures = 96 Time at risk = 46,172 LR chi2(6) = 190.00 Log likelihood = -250.60707 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ _t | Haz. ratio Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- trt | 1 | 1.000 (base) 2 | 0.042 0.017 -7.7458 0.000 0.019 0.093 3 | 0.004 0.002 -9.6904 0.000 0.001 0.013 4 | 0.000 0.000 -10.3820 0.000 0.000 0.002 | c1 | 0.460 0.037 -9.5976 0.000 0.393 0.539 c2 | 0.879 0.061 -1.8468 0.065 0.766 1.008 c3 | 1.077 0.073 1.0923 0.275 0.943 1.231 ------------------------------------------------------------------------------
Thank you,
Julie
Code:
[ * Example generated by -dataex-. For more info, type help dataex clear input byte(trt c1 c2 c3) double et 1 5 0 1 185 1 9 1 0 285 1 15 6 1 487 1 15 7 2 453 1 12 5 6 395 1 14 4 0 483 1 11 5 0 356 1 5 0 0 168 1 9 4 0 312 1 8 1 0 283 1 11 0 0 343 1 9 3 1 303 1 15 5 2 483 1 5 0 1 182 1 5 0 0 168 1 15 3 0 640 1 11 2 1 334 1 14 1 0 437 1 10 3 1 364 1 8 3 0 262 1 11 1 4 343 1 9 2 0 325 1 9 1 1 371 2 14 0 4 465 2 8 2 3 439 2 11 6 0 608 2 7 0 1 335 2 7 1 0 355 2 9 1 0 412 2 7 1 2 316 2 10 3 1 455 2 9 0 0 435 2 7 1 0 438 2 12 5 3 592 2 9 1 2 437 2 4 1 0 208 2 6 0 2 291 2 11 1 1 578 2 8 2 3 393 2 12 4 0 565 2 10 5 1 503 2 3 0 0 175 2 10 7 2 574 2 11 2 1 524 2 14 0 0 636 2 11 2 0 545 2 7 2 1 336 2 8 0 0 391 3 4 1 0 353 3 8 5 0 543 3 5 1 1 343 3 9 0 3 593 3 5 0 2 381 3 7 2 7 484 3 5 0 2 477 3 5 1 1 393 3 9 4 1 559 3 7 0 3 479 3 6 4 1 431 3 6 1 4 411 3 11 2 0 761 3 6 0 1 398 3 8 0 1 492 3 4 0 3 298 3 10 4 2 693 3 7 6 1 536 3 14 4 0 923 3 8 0 1 529 3 6 1 2 395 3 6 0 1 397 3 5 0 1 364 4 3 0 1 290 4 12 3 4 954 4 5 0 2 473 4 7 1 5 586 4 11 4 8 951 4 11 2 0 1060 4 5 1 1 776 4 8 2 2 693 4 13 3 7 1027 4 4 0 2 375 4 6 1 1 416 4 3 1 1 302 4 10 5 0 896 4 6 0 3 498 4 7 1 1 580 4 10 2 2 877 4 7 0 3 573 4 5 0 0 424 4 7 0 2 566 4 6 1 2 511 4 11 3 4 873 4 6 1 1 513 4 6 2 1 540 4 6 2 1 549 4 8 3 1 668 end
Comment