Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • joint model with longitudinal binary outcome and gsem command

    Dear all, I have a database in which I collected the time-to-event data of the drop out of 3 drugs and several covariates regarding the safety and the efficacy of drugs. Specifically I have the following variables:

    - “AED_4_trattamenti” (categorical variable)
    - “EventiYN” (time dependent dichotomous variable)
    - “dicOutcome” (time dependent dichotomous variable)
    - “OutYN==0” (drug dropout)
    - “followup” (followup time)
    - “ipw” (inverse probability weight variable)

    The aim is to estimate longitudinal adverse events (variable “EventiYN”) and efficacy of drugs (variable “dicOutcome”) simultaneously with dropout, being the adverse events and efficacy correlate to retention rate of the drugs. I tried to ran a joint model with gsem command in Stata (16.1 version).

    I declared time-to-event data:

    Code:
    stset followup [pweight=ipw], id(id) failure(OutYN==0)
    and then ran the following code:

    Code:
    gsem (EventiYN dicOutcome<- i.AED_4_trattamenti followup, family(binomial) link(logit))(_t <- i.AED_4_trattamenti, family(loglogistic, failure(_d))), pweight(ipw) nocapslatent

    Code:
    Iteration 0:   log pseudolikelihood = -4581.2249  (not concave)
    Iteration 1:   log pseudolikelihood = -3969.0842  
    Iteration 2:   log pseudolikelihood = -3812.1741  
    Iteration 3:   log pseudolikelihood = -3786.4502  
    Iteration 4:   log pseudolikelihood = -3784.5576  
    Iteration 5:   log pseudolikelihood = -3784.5314  
    Iteration 6:   log pseudolikelihood = -3784.5313  
    
    Generalized structural equation model           Number of obs     =      2,473
    
    Response       : EventiYN                       Number of obs     =      2,446
    Family         : Bernoulli
    Link           : logit
    
    Response       : dicOutcome                     Number of obs     =      2,444
    Family         : Bernoulli
    Link           : logit
    
    Response       : _t                             Number of obs     =      2,473
    Family         : loglogistic                    No. of failures   =        197
    Form           : accelerated failure-time       Time at risk      =  39837.533
    Link           : log
    
    Log pseudolikelihood = -3784.5313
    
    
    -----------------------------------------------------------------------------------
                      |               Robust
                      |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    ------------------+----------------------------------------------------------------
    EventiYN          |
    AED_4_trattamenti |
          Lacosamide  |  -.5863494    .199902    -2.93   0.003    -.9781502   -.1945486
          Perampanel  |   .2842013   .1571316     1.81   0.071    -.0237709    .5921736
                      |
             followup |  -.0122873   .0065292    -1.88   0.060    -.0250843    .0005096
                _cons |  -1.657448   .1557996   -10.64   0.000     -1.96281   -1.352086
    ------------------+----------------------------------------------------------------
    dicOutcome        |
    AED_4_trattamenti |
          Lacosamide  |   .3758846   .1213616     3.10   0.002     .1380203    .6137489
          Perampanel  |   .2033386   .1085773     1.87   0.061    -.0094691    .4161462
                      |
             followup |   .0136721   .0043052     3.18   0.001      .005234    .0221102
                _cons |  -.1572054    .110741    -1.42   0.156    -.3742538    .0598429
    ------------------+----------------------------------------------------------------
    _t                |
    AED_4_trattamenti |
          Lacosamide  |    .526203   .2148662     2.45   0.014     .1050729     .947333
          Perampanel  |  -.1240905   .1655805    -0.75   0.454    -.4486223    .2004412
                      |
                _cons |   4.923666    .161632    30.46   0.000     4.606873    5.240459
    ------------------+----------------------------------------------------------------
    /_t               |
                 logs |  -.1293126   .0423066                      -.212232   -.0463931
    -----------------------------------------------------------------------------------
    I would like to introduce the shared random effect and use the following code, but it never worked:

    Code:
    gsem (EventiYN dicOutcome <- i.AED_4_trattamenti followup U1[id]@1, family(binomial) link(logit))(_t <- i.AED_4_trattamenti U1[id]@gamma, family(loglogistic, failure(_d))), pweight(ipw) nocapslatent
    How would you correct the command?

    Thanks in advance
    Cristina

    Code:
    input float AED_4_trattamenti byte EventiYN float(dicOutcome OutYN followup ipw)
    1 0 0 1         6  1.284481
    1 0 0 1        12  1.284481
    1 0 0 1 12.866667  1.284481
    1 0 0 1        36  1.284481
    3 0 0 1         6  .8313999
    3 0 1 1        12  .8313999
    3 0 1 1 20.766666  .8313999
    3 0 1 1        36  .8313999
    3 0 0 1         6   .841961
    3 0 0 1        12   .841961
    3 0 0 1      21.3   .841961
    3 0 0 1        36   .841961
    2 0 0 1         6  3.090479
    2 0 1 1        12  3.090479
    2 0 1 1      14.2  3.090479
    2 0 1 1        36  3.090479
    3 0 0 1         6  .8506127
    3 0 0 1        12  .8506127
    3 0 0 1        24  .8506127
    3 0 0 1 33.466667  .8506127
    3 0 0 1         6  .8296934
    3 0 0 1        12  .8296934
    3 0 0 0        20  .8296934
    3 0 0 1         6  .8333105
    3 0 1 1        12  .8333105
    3 0 1 1        24  .8333105
    3 0 1 1 33.466667  .8333105
    2 1 0 1         6  1.447543
    2 1 0 1        12  1.447543
    2 1 0 1 33.466667  1.447543
    2 1 0 1        36  1.447543
    3 0 0 1         6  .8858476
    3 0 1 1        12  .8858476
    3 0 1 1        24  .8858476
    3 0 1 1 33.466667  .8858476
    3 0 1 1         6   .905351
    3 0 1 1        12   .905351
    3 0 1 1        24   .905351
    3 0 1 1        36   .905351
    3 0 0 1         6  .8569638
    3 1 1 1        12  .8569638
    3 1 0 1        24  .8569638
    3 1 0 1        36  .8569638
    3 1 1 1         6   .999061
    3 0 1 1        12   .999061
    3 0 1 1        24   .999061
    3 0 1 1        36   .999061
    3 0 1 1         6  .8074597
    3 0 1 1        12  .8074597
    3 0 1 1        24  .8074597
    3 0 1 1        36  .8074597
    2 0 1 1         6  .6663928
    2 0 1 1        12  .6663928
    2 0 1 1        24  .6663928
    2 0 1 1 33.466667  .6663928
    2 0 1 1         6 1.1937268
    2 0 1 1        12 1.1937268
    2 0 1 1        24 1.1937268
    2 0 1 1        36 1.1937268
    2 0 1 1         6    .69568
    2 0 1 1        12    .69568
    2 0 1 1        24    .69568
    2 0 1 1 33.266666    .69568
    2 0 1 1         6 1.1056215
    2 1 1 1        12 1.1056215
    2 1 1 1        24 1.1056215
    2 1 1 1 33.466667 1.1056215
    2 0 1 1         6   .652993
    2 0 1 1        12   .652993
    2 0 1 1        24   .652993
    2 0 1 1        36   .652993
    2 0 1 1         6  .6847076
    2 0 1 1        12  .6847076
    2 0 1 1        24  .6847076
    2 0 1 1 33.466667  .6847076
    2 0 0 1         6  1.604853
    2 0 0 1        12  1.604853
    2 0 0 0        13  1.604853
    2 1 0 1         6  .7084799
    2 1 0 1        12  .7084799
    2 1 0 0        13  .7084799
    2 0 0 1         6  .7275482
    2 0 1 1        12  .7275482
    2 1 1 1        24  .7275482
    2 1 1 1        36  .7275482
    2 0 1 1         6  .8143203
    2 0 1 1        12  .8143203
    2 0 1 1        24  .8143203
    2 0 1 1 33.466667  .8143203
    1 0 1 1         6  .5977339
    1 0 1 1        12  .5977339
    1 0 1 1        24  .5977339
    1 0 1 1 33.466667  .5977339
    1 0 0 1         6  .5239564
    1 0 0 1        12  .5239564
    1 0 0 0        19  .5239564
    1 0 0 1         6  .5305537
    1 0 0 1        12  .5305537
    1 0 0 0        16  .5305537
    1 0 1 1         6  1.076907
    end
Working...
X