Dear all, I have a database in which I collected the time-to-event data of the drop out of 3 drugs and several covariates regarding the safety and the efficacy of drugs. Specifically I have the following variables:
- “AED_4_trattamenti” (categorical variable)
- “EventiYN” (time dependent dichotomous variable)
- “dicOutcome” (time dependent dichotomous variable)
- “OutYN==0” (drug dropout)
- “followup” (followup time)
- “ipw” (inverse probability weight variable)
The aim is to estimate longitudinal adverse events (variable “EventiYN”) and efficacy of drugs (variable “dicOutcome”) simultaneously with dropout, being the adverse events and efficacy correlate to retention rate of the drugs. I tried to ran a joint model with gsem command in Stata (16.1 version).
I declared time-to-event data:
and then ran the following code:
I would like to introduce the shared random effect and use the following code, but it never worked:
How would you correct the command?
Thanks in advance
Cristina
- “AED_4_trattamenti” (categorical variable)
- “EventiYN” (time dependent dichotomous variable)
- “dicOutcome” (time dependent dichotomous variable)
- “OutYN==0” (drug dropout)
- “followup” (followup time)
- “ipw” (inverse probability weight variable)
The aim is to estimate longitudinal adverse events (variable “EventiYN”) and efficacy of drugs (variable “dicOutcome”) simultaneously with dropout, being the adverse events and efficacy correlate to retention rate of the drugs. I tried to ran a joint model with gsem command in Stata (16.1 version).
I declared time-to-event data:
Code:
stset followup [pweight=ipw], id(id) failure(OutYN==0)
Code:
gsem (EventiYN dicOutcome<- i.AED_4_trattamenti followup, family(binomial) link(logit))(_t <- i.AED_4_trattamenti, family(loglogistic, failure(_d))), pweight(ipw) nocapslatent
Code:
Iteration 0: log pseudolikelihood = -4581.2249 (not concave) Iteration 1: log pseudolikelihood = -3969.0842 Iteration 2: log pseudolikelihood = -3812.1741 Iteration 3: log pseudolikelihood = -3786.4502 Iteration 4: log pseudolikelihood = -3784.5576 Iteration 5: log pseudolikelihood = -3784.5314 Iteration 6: log pseudolikelihood = -3784.5313 Generalized structural equation model Number of obs = 2,473 Response : EventiYN Number of obs = 2,446 Family : Bernoulli Link : logit Response : dicOutcome Number of obs = 2,444 Family : Bernoulli Link : logit Response : _t Number of obs = 2,473 Family : loglogistic No. of failures = 197 Form : accelerated failure-time Time at risk = 39837.533 Link : log Log pseudolikelihood = -3784.5313 ----------------------------------------------------------------------------------- | Robust | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------------------+---------------------------------------------------------------- EventiYN | AED_4_trattamenti | Lacosamide | -.5863494 .199902 -2.93 0.003 -.9781502 -.1945486 Perampanel | .2842013 .1571316 1.81 0.071 -.0237709 .5921736 | followup | -.0122873 .0065292 -1.88 0.060 -.0250843 .0005096 _cons | -1.657448 .1557996 -10.64 0.000 -1.96281 -1.352086 ------------------+---------------------------------------------------------------- dicOutcome | AED_4_trattamenti | Lacosamide | .3758846 .1213616 3.10 0.002 .1380203 .6137489 Perampanel | .2033386 .1085773 1.87 0.061 -.0094691 .4161462 | followup | .0136721 .0043052 3.18 0.001 .005234 .0221102 _cons | -.1572054 .110741 -1.42 0.156 -.3742538 .0598429 ------------------+---------------------------------------------------------------- _t | AED_4_trattamenti | Lacosamide | .526203 .2148662 2.45 0.014 .1050729 .947333 Perampanel | -.1240905 .1655805 -0.75 0.454 -.4486223 .2004412 | _cons | 4.923666 .161632 30.46 0.000 4.606873 5.240459 ------------------+---------------------------------------------------------------- /_t | logs | -.1293126 .0423066 -.212232 -.0463931 -----------------------------------------------------------------------------------
Code:
gsem (EventiYN dicOutcome <- i.AED_4_trattamenti followup U1[id]@1, family(binomial) link(logit))(_t <- i.AED_4_trattamenti U1[id]@gamma, family(loglogistic, failure(_d))), pweight(ipw) nocapslatent
Thanks in advance
Cristina
Code:
input float AED_4_trattamenti byte EventiYN float(dicOutcome OutYN followup ipw) 1 0 0 1 6 1.284481 1 0 0 1 12 1.284481 1 0 0 1 12.866667 1.284481 1 0 0 1 36 1.284481 3 0 0 1 6 .8313999 3 0 1 1 12 .8313999 3 0 1 1 20.766666 .8313999 3 0 1 1 36 .8313999 3 0 0 1 6 .841961 3 0 0 1 12 .841961 3 0 0 1 21.3 .841961 3 0 0 1 36 .841961 2 0 0 1 6 3.090479 2 0 1 1 12 3.090479 2 0 1 1 14.2 3.090479 2 0 1 1 36 3.090479 3 0 0 1 6 .8506127 3 0 0 1 12 .8506127 3 0 0 1 24 .8506127 3 0 0 1 33.466667 .8506127 3 0 0 1 6 .8296934 3 0 0 1 12 .8296934 3 0 0 0 20 .8296934 3 0 0 1 6 .8333105 3 0 1 1 12 .8333105 3 0 1 1 24 .8333105 3 0 1 1 33.466667 .8333105 2 1 0 1 6 1.447543 2 1 0 1 12 1.447543 2 1 0 1 33.466667 1.447543 2 1 0 1 36 1.447543 3 0 0 1 6 .8858476 3 0 1 1 12 .8858476 3 0 1 1 24 .8858476 3 0 1 1 33.466667 .8858476 3 0 1 1 6 .905351 3 0 1 1 12 .905351 3 0 1 1 24 .905351 3 0 1 1 36 .905351 3 0 0 1 6 .8569638 3 1 1 1 12 .8569638 3 1 0 1 24 .8569638 3 1 0 1 36 .8569638 3 1 1 1 6 .999061 3 0 1 1 12 .999061 3 0 1 1 24 .999061 3 0 1 1 36 .999061 3 0 1 1 6 .8074597 3 0 1 1 12 .8074597 3 0 1 1 24 .8074597 3 0 1 1 36 .8074597 2 0 1 1 6 .6663928 2 0 1 1 12 .6663928 2 0 1 1 24 .6663928 2 0 1 1 33.466667 .6663928 2 0 1 1 6 1.1937268 2 0 1 1 12 1.1937268 2 0 1 1 24 1.1937268 2 0 1 1 36 1.1937268 2 0 1 1 6 .69568 2 0 1 1 12 .69568 2 0 1 1 24 .69568 2 0 1 1 33.266666 .69568 2 0 1 1 6 1.1056215 2 1 1 1 12 1.1056215 2 1 1 1 24 1.1056215 2 1 1 1 33.466667 1.1056215 2 0 1 1 6 .652993 2 0 1 1 12 .652993 2 0 1 1 24 .652993 2 0 1 1 36 .652993 2 0 1 1 6 .6847076 2 0 1 1 12 .6847076 2 0 1 1 24 .6847076 2 0 1 1 33.466667 .6847076 2 0 0 1 6 1.604853 2 0 0 1 12 1.604853 2 0 0 0 13 1.604853 2 1 0 1 6 .7084799 2 1 0 1 12 .7084799 2 1 0 0 13 .7084799 2 0 0 1 6 .7275482 2 0 1 1 12 .7275482 2 1 1 1 24 .7275482 2 1 1 1 36 .7275482 2 0 1 1 6 .8143203 2 0 1 1 12 .8143203 2 0 1 1 24 .8143203 2 0 1 1 33.466667 .8143203 1 0 1 1 6 .5977339 1 0 1 1 12 .5977339 1 0 1 1 24 .5977339 1 0 1 1 33.466667 .5977339 1 0 0 1 6 .5239564 1 0 0 1 12 .5239564 1 0 0 0 19 .5239564 1 0 0 1 6 .5305537 1 0 0 1 12 .5305537 1 0 0 0 16 .5305537 1 0 1 1 6 1.076907 end