Hello. I am comparing rate of change of variable called score among 6 groups.
In the group#visit_number output, I am not clear on what the values under the group#visit_number signify.
Do they signify which groups are being compared?
If so, I see that there is comparison of 3 to 2, 6 to 5 and so on, but how can I see the result of a given group compared to REFERENCE (group 1).
I want to compare 2 to 1, 3 to 1, 4 to 1, 5 to 1 and 6 to 1.
But I am not seeing that result. Please let me know what i am missing.
To make it simple to answer my question: what row would you look at if you wanted to see how group 6 changes compared to group 1, over time?
. mixed score i.group##visit_number || patno : visit_number, mle
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log likelihood = 580.94655
Iteration 1: Log likelihood = 586.30183
Iteration 2: Log likelihood = 586.51282
Iteration 3: Log likelihood = 586.51328
Iteration 4: Log likelihood = 586.51328
Computing standard errors ...
Mixed-effects ML regression Number of obs = 1,328
Group variable: patno Number of groups = 375
Obs per group:
min = 2
avg = 3.5
max = 4
Wald chi2(23) = 500.77
Log likelihood = 586.51328 Prob > chi2 = 0.0000
---------------------------------------------------------------------------------------
score | Coefficient Std. err. z P>|z| [95% conf. interval]
----------------------+----------------------------------------------------------------
group |
2 | .019064 .0581787 0.33 0.743 -.0949641 .1330921
3 | -.0892064 .051162 -1.74 0.081 -.189482 .0110692
4 | -.0585491 .0510619 -1.15 0.252 -.1586287 .0415304
5 | -.0210644 .0526452 -0.40 0.689 -.1242472 .0821183
6 | -.1391837 .0473668 -2.94 0.003 -.2320208 -.0463465
|
visit_number |
2 | -.0014286 .0356258 -0.04 0.968 -.0712539 .0683967
3 | -.0696863 .0369183 -1.89 0.059 -.1420448 .0026721
4 | -.1670379 .0434714 -3.84 0.000 -.2522402 -.0818356
|
group#visit_number |
2 2 | -.1461576 .046779 -3.12 0.002 -.2378427 -.0544725
2 3 | -.1152624 .0485434 -2.37 0.018 -.2104056 -.0201192
2 4 | -.0765087 .0580277 -1.32 0.187 -.190241 .0372236
3 2 | -.0806349 .0411371 -1.96 0.050 -.1612622 -7.60e-06
3 3 | .0194695 .0429981 0.45 0.651 -.0648052 .1037441
3 4 | .0116841 .0497456 0.23 0.814 -.0858155 .1091837
4 2 | -.0757589 .0410567 -1.85 0.065 -.1562286 .0047108
4 3 | -.0594215 .04254 -1.40 0.162 -.1427984 .0239553
4 4 | -.0139802 .0494889 -0.28 0.778 -.1109766 .0830162
5 2 | -.1026891 .0423298 -2.43 0.015 -.1856539 -.0197242
5 3 | -.0660205 .0438798 -1.50 0.132 -.1520233 .0199823
5 4 | -.0394902 .0513101 -0.77 0.442 -.1400562 .0610757
6 2 | -.0782993 .0380856 -2.06 0.040 -.1529457 -.0036529
6 3 | -.0699047 .0394152 -1.77 0.076 -.1471572 .0073477
6 4 | -.0419134 .0461162 -0.91 0.363 -.1322995 .0484726
|
_cons | .7371429 .0443076 16.64 0.000 .6503016 .8239841
---------------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects parameters | Estimate Std. err. [95% conf. interval]
-----------------------------+------------------------------------------------
patno: Independent |
var(visit_number) | 2.71e-14 3.66e-11 0 .
var(_cons) | .0278998 .0023422 .0236669 .0328896
-----------------------------+------------------------------------------------
var(Residual) | .0133266 .0006116 .0121802 .0145808
------------------------------------------------------------------------------
LR test vs. linear model: chi2(2) = 687.69 Prob > chi2 = 0.0000
In the group#visit_number output, I am not clear on what the values under the group#visit_number signify.
Do they signify which groups are being compared?
If so, I see that there is comparison of 3 to 2, 6 to 5 and so on, but how can I see the result of a given group compared to REFERENCE (group 1).
I want to compare 2 to 1, 3 to 1, 4 to 1, 5 to 1 and 6 to 1.
But I am not seeing that result. Please let me know what i am missing.
To make it simple to answer my question: what row would you look at if you wanted to see how group 6 changes compared to group 1, over time?
. mixed score i.group##visit_number || patno : visit_number, mle
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log likelihood = 580.94655
Iteration 1: Log likelihood = 586.30183
Iteration 2: Log likelihood = 586.51282
Iteration 3: Log likelihood = 586.51328
Iteration 4: Log likelihood = 586.51328
Computing standard errors ...
Mixed-effects ML regression Number of obs = 1,328
Group variable: patno Number of groups = 375
Obs per group:
min = 2
avg = 3.5
max = 4
Wald chi2(23) = 500.77
Log likelihood = 586.51328 Prob > chi2 = 0.0000
---------------------------------------------------------------------------------------
score | Coefficient Std. err. z P>|z| [95% conf. interval]
----------------------+----------------------------------------------------------------
group |
2 | .019064 .0581787 0.33 0.743 -.0949641 .1330921
3 | -.0892064 .051162 -1.74 0.081 -.189482 .0110692
4 | -.0585491 .0510619 -1.15 0.252 -.1586287 .0415304
5 | -.0210644 .0526452 -0.40 0.689 -.1242472 .0821183
6 | -.1391837 .0473668 -2.94 0.003 -.2320208 -.0463465
|
visit_number |
2 | -.0014286 .0356258 -0.04 0.968 -.0712539 .0683967
3 | -.0696863 .0369183 -1.89 0.059 -.1420448 .0026721
4 | -.1670379 .0434714 -3.84 0.000 -.2522402 -.0818356
|
group#visit_number |
2 2 | -.1461576 .046779 -3.12 0.002 -.2378427 -.0544725
2 3 | -.1152624 .0485434 -2.37 0.018 -.2104056 -.0201192
2 4 | -.0765087 .0580277 -1.32 0.187 -.190241 .0372236
3 2 | -.0806349 .0411371 -1.96 0.050 -.1612622 -7.60e-06
3 3 | .0194695 .0429981 0.45 0.651 -.0648052 .1037441
3 4 | .0116841 .0497456 0.23 0.814 -.0858155 .1091837
4 2 | -.0757589 .0410567 -1.85 0.065 -.1562286 .0047108
4 3 | -.0594215 .04254 -1.40 0.162 -.1427984 .0239553
4 4 | -.0139802 .0494889 -0.28 0.778 -.1109766 .0830162
5 2 | -.1026891 .0423298 -2.43 0.015 -.1856539 -.0197242
5 3 | -.0660205 .0438798 -1.50 0.132 -.1520233 .0199823
5 4 | -.0394902 .0513101 -0.77 0.442 -.1400562 .0610757
6 2 | -.0782993 .0380856 -2.06 0.040 -.1529457 -.0036529
6 3 | -.0699047 .0394152 -1.77 0.076 -.1471572 .0073477
6 4 | -.0419134 .0461162 -0.91 0.363 -.1322995 .0484726
|
_cons | .7371429 .0443076 16.64 0.000 .6503016 .8239841
---------------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects parameters | Estimate Std. err. [95% conf. interval]
-----------------------------+------------------------------------------------
patno: Independent |
var(visit_number) | 2.71e-14 3.66e-11 0 .
var(_cons) | .0278998 .0023422 .0236669 .0328896
-----------------------------+------------------------------------------------
var(Residual) | .0133266 .0006116 .0121802 .0145808
------------------------------------------------------------------------------
LR test vs. linear model: chi2(2) = 687.69 Prob > chi2 = 0.0000
Comment