Hello,
I have a dataset containing monthly aggregated mortality rates for a specific (not very dangerous) procedure over a 10-year period. My goal is to create a plot that effectively illustrates the general trend over time, without displaying the individual data points, as the final visualization will be used for a lecture (but I have included the scatter plot for clarity here).
I have considered using locally weighted regression (LOWESS) or local polynomial smoothing (lpoly), but I’ve noticed some irregularities at the tails when using lpoly. Given my objective, would either of these methods be appropriate, or is there a better approach for producing a smooth, reliable trend line?
I appreciate any insights or alternative recommendations.
Thank you!
I have a dataset containing monthly aggregated mortality rates for a specific (not very dangerous) procedure over a 10-year period. My goal is to create a plot that effectively illustrates the general trend over time, without displaying the individual data points, as the final visualization will be used for a lecture (but I have included the scatter plot for clarity here).
I have considered using locally weighted regression (LOWESS) or local polynomial smoothing (lpoly), but I’ve noticed some irregularities at the tails when using lpoly. Given my objective, would either of these methods be appropriate, or is there a better approach for producing a smooth, reliable trend line?
I appreciate any insights or alternative recommendations.
Thank you!
Code:
clear input int admitmonth float monthly_mortality 622 0 623 0 624 0 625 0 626 0 627 0 628 0 629 0 630 0 631 0 632 .16666667 633 .2857143 634 0 635 0 636 0 637 0 638 0 639 0 640 0 641 0 642 0 643 0 644 0 645 0 646 0 647 0 648 0 649 0 650 0 651 0 652 0 653 0 654 .125 655 0 656 0 657 0 658 0 659 0 660 0 661 0 662 0 663 0 664 0 665 0 666 0 667 0 668 0 669 .14285715 670 0 671 0 672 0 673 0 674 0 675 0 676 0 677 0 678 0 679 0 680 0 681 0 682 .16666667 683 0 684 0 685 0 686 0 687 0 688 0 689 0 690 0 691 0 692 0 693 0 694 .125 695 0 696 0 697 0 698 0 699 0 700 .25 701 0 702 0 703 0 704 0 705 0 706 0 707 0 708 0 709 0 710 0 711 0 712 .16666667 713 .14285715 715 0 716 0 717 0 718 0 719 0 720 0 721 0 722 0 723 0 724 0 725 0 726 0 727 0 728 0 729 0 730 0 731 0 732 0 733 0 734 0 735 0 736 0 737 0 738 .25 739 0 740 .2 741 0 742 0 743 0 end format %tm admitmonth twoway lpoly monthly_mortality admitmonth, color(maroon%10) degree(4) || /// scatter monthly_mortality admitmonth /// , /// scheme(uncluttered) /// xtitle("Year") ytitle("In-hospital mortality [%]", margin(vsmall)) /// tlabel(624(12)744, format("%tmCY")) /// xlabel(, labsize(small)) /// ylabel(0(0.05)0.3, labsize(small)) /// legend(off) /// graphregion(margin(l-1 r+3)) /// title("Monthly mortality - lpoly") /// name(lpoly, replace) twoway lowess monthly_mortality admitmonth, color(maroon%10) || /// scatter monthly_mortality admitmonth /// , /// scheme(uncluttered) /// xtitle("Year") ytitle("In-hospital mortality [%]", margin(vsmall)) /// tlabel(624(12)744, format("%tmCY")) /// xlabel(, labsize(small)) /// ylabel(0(0.05)0.3, labsize(small)) /// legend(off) /// graphregion(margin(l-1 r+3)) /// xtitle("Year", margin(medsmall) size(medium)) /// ylabel(0(0.05)0.3, labsize(small)) /// ytitle("In-hospital mortality [%]", margin(medsmall) size(medium)) /// title("Monthly mortality - lowess") /// name(lowess, replace)
Comment