Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Help with age-adjusted mortality rates

    Hi Stata community!

    I have a dataset of around 500 patients, and looking at long-term outcomes. I have mortality outcome (named Dead- 0 or 1) and time to event in years (named PersonTime). I want to express mortality rate per 100-person years by subgroups of patients by Gender (0,1) and by Disease status (FNcategory- 0, 1, 2). BUT I want to also adjust for age as age would be a confounder when it comes to mortality.

    I started with stset PersonTime, failure(Dead)


    I then fit a Cox proportional hazards model to adjust for Age, stratified by Gender and Disease status
    stcox i.Gender i.FNcategory Age, robust


    ------------------------------------------------------------------------------
    | Robust
    _t | Haz. ratio std. err. z P>|z| [95% conf. interval]
    -------------+----------------------------------------------------------------
    1.Gender | 1.928237 .3191884 3.97 0.000 1.393984 2.667246
    |
    FNcategory |
    1 | 1.266628 .3227276 0.93 0.354 .768722 2.087032
    2 | 1.730459 .4978788 1.91 0.057 .9845954 3.041337
    |
    Age | 1.113583 .0096699 12.39 0.000 1.094791 1.132698
    ------------------------------------------------------------------------------

    I've been told that I then need to do:
    predict hazard, xb
    gen AdjustedHazard = exp(hazard)

    and gen MortalityRateAdjusted = (AdjustedHazard * PersonTime * 100)
    to get an adjusted mortality rate based on an adjusted hazard which accounts for age?

    But the numbers I get are completely nonsensical and way too large per 100 person-years.

    What should I do?? I'm not sure if this is the right way.

    I'm going crazy with this and not sure if missing something here. Any help is greatly appreciated!

  • #2
    Morgan:
    welcome to this forum.
    You may want to consider -poisson- as in the following toy-example, which is supported by a dataset that comes with An Introduction to Stata for Health Researchers, Fifth Edition, Stata Press, 2021:
    Code:
    . use "C:\Professione\Statistiche\Stata\ishr\compliance3.dta"
    (Compliance data stset with age as time axis)
    
    
    . gen event=_d
    
    . gen pyr=( _t - _t0 )
    
    
    . poisson event b0.particip i.particip i.ranagr , exposure(pyr) ir
    
    Iteration 0:  Log likelihood = -338.41165  
    Iteration 1:  Log likelihood = -338.40638  
    Iteration 2:  Log likelihood = -338.40638  
    
    Poisson regression                                      Number of obs =    555
                                                            LR chi2(5)    =  32.23
                                                            Prob > chi2   = 0.0000
    Log likelihood = -338.40638                             Pseudo R2     = 0.0454
    
    ------------------------------------------------------------------------------
           event |        IRR   Std. err.      z    P>|z|     [95% conf. interval]
    -------------+----------------------------------------------------------------
        particip |
         1. Yes  |   .4889068   .0989234    -3.54   0.000     .3288496    .7268666
                 |
          ranagr |
          66-67  |   1.447485    .599327     0.89   0.372     .6429489    3.258754
          68-69  |   2.679351   .9941403     2.66   0.008     1.294797    5.544438
          70-71  |   1.663297   .6732149     1.26   0.209     .7523993     3.67698
          72-73  |   3.238091   1.161152     3.28   0.001     1.603449    6.539172
                 |
           _cons |   .0314407   .0108945    -9.98   0.000      .015942    .0620073
         ln(pyr) |          1  (exposure)
    ------------------------------------------------------------------------------
    Note: _cons estimates baseline incidence rate.
    
    . mat list e(b)
    
    e(b)[1,8]
             event:      event:      event:      event:      event:      event:      event:      event:
                0b.          1.        64b.         66.         68.         70.         72.            
          particip    particip      ranagr      ranagr      ranagr      ranagr      ranagr       _cons
    y1           0  -.71558348           0   .36982745   .98557463   .50880188   1.1749839  -3.4596509
    
    . lincom _cons+1.particip , eform
    
     ( 1)  [event]1.particip + [event]_cons = 0
    
    ------------------------------------------------------------------------------
           event |     exp(b)   Std. err.      z    P>|z|     [95% conf. interval]
    -------------+----------------------------------------------------------------
             (1) |   .0153716   .0049496   -12.97   0.000     .0081778    .0288936
    ------------------------------------------------------------------------------
    
    .
    The mortality rate for a study participant aged 64-65 approximates 15 deaths/1000 person-year.
    Kind regards,
    Carlo
    (StataNow 18.5)

    Comment

    Working...
    X