Dear StataList
I'm trying to merge a master dataset with monthly data with a quarterly source dataset
Master:
Source:
For my source I used the following to generate a quarterly date
and ended up with this:
My attempt gave me a weird result.
I tried using 1:1 and 1:m but stata gave me this error
When I used m:1 my dates now make no sense and I can't trust that my dataset is aligned properly.
I'd be grateful for your help.
Thank you
I'm trying to merge a master dataset with monthly data with a quarterly source dataset
Master:
Code:
dataex ----------------------- copy starting from the next line ----------------------------------------- copy up to and including the previous line ------------------ Listed 100 out of 978 observations Use the count() option to list more .Code:* Example generated by -dataex-. For more info, type help dataex clear input str32 Destination float Mdate double Industrial_FDI float VIX str3 country_code float(GPR GPRC) "Australia" 518 153.51691017050715 29.15 "AUS" 358.7112 .4018736 "Australia" 521 92.45285795909041 19.52 "AUS" 145.76973 .14463495 "Australia" 524 316.7221999533908 22.72 "AUS" 118.19628 .13827597 "Australia" 527 5.05197216363338 18.31 "AUS" 129.46507 .09875128 "Australia" 530 172.2434735838447 16.74 "AUS" 138.53207 .13726443 "Australia" 533 72.9297079165198 14.34 "AUS" 137.23392 .0835771 "Australia" 536 190.863280678025 13.34 "AUS" 153.8716 .1525439 "Australia" 539 95.34706331045 13.29 "AUS" 109.89523 .10479184 "Australia" 542 99.6998794352905 14.02 "AUS" 90.41048 .062997535 "Australia" 545 72.5522678629729 12.04 "AUS" 81.12405 .08733098 "Australia" 548 97.42602747973937 11.92 "AUS" 103.80766 .07302041 "Australia" 554 270.6699214447391 11.39 "AUS" 92.79762 .09469154 "Australia" 563 5.27704485488127 11.56 "AUS" 90.60656 .071516804 "Australia" 566 7.66257995735608 14.64 "AUS" 87.3365 .06939224 "Australia" 575 174.6726728318188 22.5 "AUS" 94.96749 .07453255 "Australia" 581 1.18229955687413 23.95 "AUS" 87.54842 .0782881 "Australia" 590 13.0529831201393 44.14 "AUS" 72.64462 .04510443 "Australia" 593 13.7806460366862 26.35 "AUS" 81.10959 .02256063 "Australia" 599 113.31114232412058 21.68 "AUS" 92.94691 .07643414 "Australia" 602 5.39159854157259 17.59 "AUS" 74.11694 .067879446 "Australia" 605 2.14742370510351 34.54 "AUS" 96.4537 .0859993 "Australia" 608 87.3472106214208 23.7 "AUS" 71.16855 .06681671 "Australia" 611 113.51002139037439 17.75 "AUS" 97.2039 .10574418 "Australia" 617 5.78119979840956 16.52 "AUS" 84.39185 .04680805 "Australia" 620 103.845486797982 42.96 "AUS" 83.35045 .05326705 "Australia" 623 78.23441274346507 23.4 "AUS" 85.34132 .03803438 "Australia" 626 105.05227538147368 15.5 "AUS" 88.75998 .06207325 "Australia" 629 5.0359998448912 17.08 "AUS" 77.82243 .04862903 "Australia" 632 2.2627500144816 15.73 "AUS" 69.28051 .07696255 "Australia" 635 52.7759976873558 18.02 "AUS" 74.83156 .04271513 "Australia" 636 300.074149024059 14.28 "AUS" 90.65749 .05504385 "Australia" 638 52.2718762485661 12.7 "AUS" 75.89672 .05318772 "Australia" 639 268.23269184508626 13.52 "AUS" 95.10787 .08235998 "Australia" 641 1.5695999874432 16.86 "AUS" 82.97301 .06088512 "Australia" 642 100.078281350129 13.45 "AUS" 73.975815 .0314169 "Australia" 643 89.3405374444399 17.01 "AUS" 90.95675 .0573943 "Australia" 644 241.3651685004295 16.6 "AUS" 100.45933 .0885092 "Australia" 645 13.5225288885003 13.75 "AUS" 72.95312 .05786828 "Australia" 646 15.96572103874107 13.7 "AUS" 77.77902 .04165878 "Australia" 647 512.6052086448998 13.72 "AUS" 70.37249 .08326395 "Australia" 648 114.84902322764196 18.41 "AUS" 77.91597 .035349566 "Australia" 649 271.020469064709 14 "AUS" 69.003525 .04562422 "Australia" 650 359.0666294984144 13.88 "AUS" 119.83855 .10790697 "Australia" 651 98.02835634580066 13.41 "AUS" 93.22154 .09070474 "Australia" 652 232.5659861929459 11.4 "AUS" 83.42886 .05644403 "Australia" 653 194.63592333650794 11.57 "AUS" 98.76711 .05155457 "Australia" 654 116.0144934710481 16.95 "AUS" 138.75395 .25103945 "Australia" 655 171.28658354401801 11.98 "AUS" 136.44559 .2193164 "Australia" 656 82.96476097395711 16.31 "AUS" 131.55666 .20873475 "Australia" 657 64.84887802121551 14.03 "AUS" 83.661 .06463387 "Australia" 658 5.00998866490065 13.33 "AUS" 84.38005 .177041 "Australia" 659 60.50562383797012 19.2 "AUS" 86.52622 .182887 "Australia" 661 57.2331826722868 13.34 "AUS" 111.9247 .15052 "Australia" 664 4.388000136028 13.84 "AUS" 76.26233 .04703065 "Australia" 666 178.6015880307878 12.12 "AUS" 106.80866 .07792545 "Australia" 667 43.9319118768444 28.43 "AUS" 82.47853 .04712091 "Australia" 670 196.37429852534285 16.13 "AUS" 150.71588 .12785389 "Australia" 671 143.391563179219 18.21 "AUS" 148.23688 .0983671 "Australia" 672 1.30843185534351 20.2 "AUS" 118.21114 .10659993 "Australia" 673 84.6417521461589 20.55 "AUS" 103.74965 .06360701 "Australia" 674 1.30404702722896 13.95 "AUS" 109.7203 .0452673 "Australia" 676 5.88378203262743 14.19 "AUS" 88.33242 .0546274 "Australia" 679 66.7919981405108 13.42 "AUS" 98.73849 .05685342 "Australia" 683 87.6354756831622 14.04 "AUS" 102.18047 .05904138 "Australia" 684 8.554879326540789 11.99 "AUS" 105.20123 .12662074 "Australia" 686 8.01794571752694 12.37 "AUS" 96.63588 .03845415 "Australia" 687 4.24192205168453 10.82 "AUS" 119.45992 .14710519 "Australia" 688 4.39733777154964 10.41 "AUS" 102.57996 .1320065 "Australia" 689 72.1832930084882 11.18 "AUS" 126.78902 .1857585 "Australia" 690 153.62090239796686 10.26 "AUS" 102.81346 .04768717 "Australia" 691 4.7810438330343 10.59 "AUS" 138.53162 .24033326 "Australia" 692 111.70518313712653 9.51 "AUS" 115.53445 .0848854 "Australia" 693 4.69987101388472 10.18 "AUS" 91.46157 .08116224 "Australia" 694 51.36725639916259 11.28 "AUS" 92.59602 .02945632 "Australia" 695 1.778994750187204 11.04 "AUS" 82.71825 .11422827 "Australia" 696 248.3902547631801 13.54 "AUS" 92.42679 .09110629 "Australia" 697 12.3776649722749 19.85 "AUS" 64.49137 .02789919 "Australia" 698 1.47677823905732 19.97 "AUS" 111.9623 .1522802 "Australia" 699 90.33450187760775 15.93 "AUS" 123.26347 .05182914 "Australia" 700 7.11197404158586 15.43 "AUS" 125.66662 .1512732 "Australia" 702 17.6040015069025 12.83 "AUS" 110.02843 .111002 "Australia" 703 131.0769489388529 12.86 "AUS" 112.74168 .0985354 "Australia" 704 198.5520440939224 12.12 "AUS" 75.05391 .04199916 "Australia" 705 75.6581388997094 21.23 "AUS" 92.01648 .07414731 "Australia" 706 179.5312180781125 18.07 "AUS" 80.40759 .0847709 "Australia" 707 3.43500175185089 25.42 "AUS" 90.60767 .1689744 "Australia" 708 48.837586721138344 16.57 "AUS" 87.4241 .14874628 "Australia" 709 71.34996415377798 14.78 "AUS" 96.80016 .066093855 "Australia" 710 96.87380211941274 13.71 "AUS" 82.32829 .19187453 "Australia" 711 130.4447755127963 13.12 "AUS" 79.25345 .11639359 "Australia" 712 135.63555332737047 18.71 "AUS" 106.4719 .16332847 "Australia" 713 49.53545530931814 15.08 "AUS" 106.58846 .11217534 "Australia" 714 252.21372529747921 16.12 "AUS" 93.52126 .15042916 "Australia" 715 8.845936399197878 18.98 "AUS" 103.40442 .18582426 "Australia" 717 4.38394869101505 13.22 "AUS" 97.83673 .08828723 "Australia" 718 66.0836227945159 12.62 "AUS" 73.078384 .11443662 "Australia" 719 85.58889638596006 13.78 "AUS" 74.27989 .11163965 "Australia" 720 28.88434734542577 18.84 "AUS" 138.42094 .19413193 "Australia" 721 122.8428718542637 40.11 "AUS" 75.95556 .08024967 "Australia" 722 111.6841827310382 53.54 "AUS" 81.54003 .12399521 end format %tm Mdate
For my source I used the following to generate a quarterly date
Code:
gen qdate = yq(Year, Quarters) format qdate %tq
Code:
----------------------- copy starting from the next line ----------------------------------------- copy up to and including the previous line ------------------ Listed 100 out of 192 observations Use the count() option to list more .Code:* Example generated by -dataex-. For more info, type help dataex clear input int Year byte Quarters double GEF float qdate 1975 1 .348017309098343 60 1975 2 .350317895043664 61 1975 3 .346090481436026 62 1975 4 .353630754302994 63 1976 1 .313182259208404 64 1976 2 .309708468211529 65 1976 3 .255311373580155 66 1976 4 .273957335869496 67 1977 1 .247843145392628 68 1977 2 .206522461688371 69 1977 3 .239103062607169 70 1977 4 .266387758800504 71 1978 1 .226744808592191 72 1978 2 .2295822284189 73 1978 3 .225766807531485 74 1978 4 .167931946653422 75 1979 1 .193889326865204 76 1979 2 .014086688624344 77 1979 3 -.0827023832367562 78 1979 4 -.0691036731461301 79 1980 1 -.0838151202419258 80 1980 2 .0432253650380687 81 1980 3 .0180522296148671 82 1980 4 .088496139792411 83 1981 1 -.097504892824819 84 1981 2 -.0523054698925359 85 1981 3 -.0264698647207201 86 1981 4 -.109358498153985 87 1982 1 .0272661789469188 88 1982 2 .0544411258174124 89 1982 3 .0889675751344975 90 1982 4 .242898462592534 91 1983 1 .283383779782916 92 1983 2 .287893315399299 93 1983 3 .346408873209162 94 1983 4 .333580350610651 95 1984 1 .277794977794878 96 1984 2 .269521167409927 97 1984 3 .280190882400113 98 1984 4 .288454595171351 99 1985 1 .294831966132069 100 1985 2 .29047733221453 101 1985 3 .229249969959985 102 1985 4 .185735840911551 103 1986 1 .184920449833201 104 1986 2 .159267239166694 105 1986 3 .101674901706708 106 1986 4 .13936152886829 107 1987 1 .104736639440848 108 1987 2 .121197299251788 109 1987 3 .114251781155051 110 1987 4 .110104389133776 111 1988 1 .0799068743243151 112 1988 2 .0438768212749731 113 1988 3 .0604202231126318 114 1988 4 .036356803335416 115 1989 1 -.0127647737391928 116 1989 2 -.0306437161252737 117 1989 3 .0556934635582499 118 1989 4 .0582749128783206 119 1990 1 -.0187321463393172 120 1990 2 .0980868124162989 121 1990 3 .0711173179575554 122 1990 4 .0836228165301396 123 1991 1 .164871080095036 124 1991 2 .221147544937654 125 1991 3 .221257335684281 126 1991 4 .328600447586377 127 1992 1 .294087025891484 128 1992 2 .319810434456036 129 1992 3 .308755605287922 130 1992 4 .305718729844549 131 1993 1 .271830721066679 132 1993 2 .241056882629679 133 1993 3 .211876722143694 134 1993 4 .213902214056672 135 1994 1 .12467916364733 136 1994 2 .252203976958148 137 1994 3 .236739587427145 138 1994 4 .104553402206986 139 1995 1 -.0312747665095084 140 1995 2 -.0927330812280583 141 1995 3 -.0979039910781864 142 1995 4 -.0141196734224682 143 1996 1 -.200333565635611 144 1996 2 -.210695209174233 145 1996 3 -.206971686940951 146 1996 4 -.239768656855137 147 1997 1 -.286050838690992 148 1997 2 -.279419652853644 149 1997 3 -.31651929567759 150 1997 4 -.419700931918019 151 1998 1 -.403772057513179 152 1998 2 -.40370691632402 153 1998 3 -.412003134136664 154 1998 4 -.462542413486552 155 1999 1 -.456479196850361 156 1999 2 -.423993264670496 157 1999 3 -.456580396730076 158 1999 4 -.397021596445035 159 end format %tq qdate
Code:
merge m:1 qdate using "D:\STATA\GEF.dta"
Code:
---------------------- copy starting from the next line ----------------------------------------- copy up to and including the previous line ------------------ Listed 100 out of 4316 observations Use the count() option to list moreCode:* Example generated by -dataex-. For more info, type help dataex clear input str24 Source str32 CountryName str3 country_code float Mdate double Industrial_FDI float(VIX GPR GPRC) int Year float qdate byte Quarters double GEF byte _merge "Singapore" "China" "CHN" 518 132.971836356703 29.15 358.7112 .8065187 15795 5 . . 1 "USA" "China" "CHN" 518 4.35801056817563 29.15 358.7112 .8065187 15795 5 . . 1 "USA" "China" "CHN" 518 4.35801056817563 29.15 358.7112 .8065187 15795 5 . . 1 "USA" "China" "CHN" 518 132.971836356703 29.15 358.7112 .8065187 15795 5 . . 1 "Denmark" "Japan" "JPN" 518 43.5801056817563 29.15 358.7112 .8148333 15795 5 . . 1 "Taiwan, China" "China" "CHN" 518 132.971836356703 29.15 358.7112 .8065187 15795 5 . . 1 "Sweden" "Thailand" "THA" 518 132.971836356703 29.15 358.7112 .10254705 15795 5 . . 1 "USA" "China" "CHN" 518 65.3701585226344 29.15 358.7112 .8065187 15795 5 . . 1 "Japan" "China" "CHN" 518 132.971836356703 29.15 358.7112 .8065187 15795 5 . . 1 "USA" "China" "CHN" 518 155.145434439179 29.15 358.7112 .8065187 15795 5 . . 1 "Republic of Korea" "Indonesia" "IDN" 518 175.570848177807 29.15 358.7112 .1718356 15795 5 . . 1 "Republic of Korea" "China" "CHN" 518 10.8950264204391 29.15 358.7112 .8065187 15795 5 . . 1 "Singapore" "Australia" "AUS" 518 65.3701585226344 29.15 358.7112 .4018736 15795 5 . . 1 "Singapore" "China" "CHN" 518 155.145434439179 29.15 358.7112 .8065187 15795 5 . . 1 "USA" "Philippines" "PHL" 518 155.145434439179 29.15 358.7112 .20786564 15795 5 . . 1 "Malaysia" "China" "CHN" 518 155.145434439179 29.15 358.7112 .8065187 15795 5 . . 1 "Belgium" "Malaysia" "MYS" 518 65.3701585226344 29.15 358.7112 .0997755 15795 5 . . 1 "Singapore" "China" "CHN" 518 202.25263496214 29.15 358.7112 .8065187 15795 5 . . 1 "USA" "Japan" "JPN" 518 4.35801056817563 29.15 358.7112 .8148333 15795 5 . . 1 "Switzerland" "China" "CHN" 518 155.145434439179 29.15 358.7112 .8065187 15795 5 . . 1 "United Kingdom" "South Korea" "KOR" 518 4.35801056817563 29.15 358.7112 .8730357 15795 5 . . 1 "Japan" "Philippines" "PHL" 518 202.25263496214 29.15 358.7112 .20786564 15795 5 . . 1 "USA" "China" "CHN" 518 4.35801056817563 29.15 358.7112 .8065187 15795 5 . . 1 "Japan" "Hong Kong" "HKG" 518 4.35801056817563 29.15 358.7112 .12194784 15795 5 . . 1 "Thailand" "Hong Kong" "HKG" 518 155.145434439179 29.15 358.7112 .12194784 15795 5 . . 1 "Japan" "China" "CHN" 518 132.971836356703 29.15 358.7112 .8065187 15795 5 . . 1 "Republic of Korea" "China" "CHN" 518 65.3701585226344 29.15 358.7112 .8065187 15795 5 . . 1 "Taiwan, China" "China" "CHN" 518 132.971836356703 29.15 358.7112 .8065187 15795 5 . . 1 "Japan" "China" "CHN" 518 4.35801056817563 29.15 358.7112 .8065187 15795 5 . . 1 "USA" "China" "CHN" 518 155.145434439179 29.15 358.7112 .8065187 15795 5 . . 1 "Republic of Korea" "China" "CHN" 518 132.971836356703 29.15 358.7112 .8065187 15795 5 . . 1 "Hong Kong" "China" "CHN" 518 10.9407223402517 29.15 358.7112 .8065187 15795 5 . . 1 "Taiwan, China" "China" "CHN" 518 132.971836356703 29.15 358.7112 .8065187 15795 5 . . 1 "USA" "China" "CHN" 518 132.971836356703 29.15 358.7112 .8065187 15795 5 . . 1 "Japan" "China" "CHN" 518 65.3701585226344 29.15 358.7112 .8065187 15795 5 . . 1 "Netherlands" "China" "CHN" 518 132.971836356703 29.15 358.7112 .8065187 15795 5 . . 1 "USA" "China" "CHN" 518 155.145434439179 29.15 358.7112 .8065187 15795 5 . . 1 "Finland" "China" "CHN" 518 202.25263496214 29.15 358.7112 .8065187 15795 5 . . 1 "Sweden" "South Korea" "KOR" 518 4.35801056817563 29.15 358.7112 .8730357 15795 5 . . 1 "Malaysia" "Thailand" "THA" 518 175.570848177807 29.15 358.7112 .10254705 15795 5 . . 1 "Switzerland" "China" "CHN" 518 13.1191512774418 29.15 358.7112 .8065187 15795 5 . . 1 "Republic of Korea" "China" "CHN" 518 10.8950264204391 29.15 358.7112 .8065187 15795 5 . . 1 "USA" "China" "CHN" 518 4.35801056817563 29.15 358.7112 .8065187 15795 5 . . 1 "United Kingdom" "China" "CHN" 518 4.35801056817563 29.15 358.7112 .8065187 15795 5 . . 1 "Denmark" "Japan" "JPN" 518 132.971836356703 29.15 358.7112 .8148333 15795 5 . . 1 "USA" "China" "CHN" 518 4.35801056817563 29.15 358.7112 .8065187 15795 5 . . 1 "Taiwan, China" "China" "CHN" 518 132.971836356703 29.15 358.7112 .8065187 15795 5 . . 1 "USA" "China" "CHN" 518 155.145434439179 29.15 358.7112 .8065187 15795 5 . . 1 "Germany" "China" "CHN" 518 10.8950264204391 29.15 358.7112 .8065187 15795 5 . . 1 "Japan" "China" "CHN" 518 155.145434439179 29.15 358.7112 .8065187 15795 5 . . 1 "Sweden" "China" "CHN" 518 132.971836356703 29.15 358.7112 .8065187 15795 5 . . 1 "France" "China" "CHN" 518 155.145434439179 29.15 358.7112 .8065187 15795 5 . . 1 "Japan" "China" "CHN" 518 4.35801056817563 29.15 358.7112 .8065187 15795 5 . . 1 "Japan" "Philippines" "PHL" 518 175.570848177807 29.15 358.7112 .20786564 15795 5 . . 1 "USA" "China" "CHN" 518 132.971836356703 29.15 358.7112 .8065187 15795 5 . . 1 "USA" "China" "CHN" 518 1.90662962357684 29.15 358.7112 .8065187 15795 5 . . 1 "Republic of Korea" "China" "CHN" 518 175.570848177807 29.15 358.7112 .8065187 15795 5 . . 1 "USA" "Japan" "JPN" 518 1.90662962357684 29.15 358.7112 .8148333 15795 5 . . 1 "Republic of Korea" "China" "CHN" 518 10.8950264204391 29.15 358.7112 .8065187 15795 5 . . 1 "Germany" "China" "CHN" 518 132.971836356703 29.15 358.7112 .8065187 15795 5 . . 1 "USA" "Philippines" "PHL" 518 155.145434439179 29.15 358.7112 .20786564 15795 5 . . 1 "USA" "Japan" "JPN" 518 155.145434439179 29.15 358.7112 .8148333 15795 5 . . 1 "Singapore" "China" "CHN" 518 10.8950264204391 29.15 358.7112 .8065187 15795 5 . . 1 "Republic of Korea" "China" "CHN" 518 175.570848177807 29.15 358.7112 .8065187 15795 5 . . 1 "USA" "China" "CHN" 518 155.145434439179 29.15 358.7112 .8065187 15795 5 . . 1 "Japan" "China" "CHN" 518 202.25263496214 29.15 358.7112 .8065187 15795 5 . . 1 "USA" "China" "CHN" 518 65.3701585226344 29.15 358.7112 .8065187 15795 5 . . 1 "Germany" "South Korea" "KOR" 518 4.35801056817563 29.15 358.7112 .8730357 15795 5 . . 1 "Germany" "Hong Kong" "HKG" 518 4.35801056817563 29.15 358.7112 .12194784 15795 5 . . 1 "Taiwan, China" "China" "CHN" 518 132.971836356703 29.15 358.7112 .8065187 15795 5 . . 1 "Taiwan, China" "China" "CHN" 518 155.145434439179 29.15 358.7112 .8065187 15795 5 . . 1 "USA" "Hong Kong" "HKG" 518 4.35801056817563 29.15 358.7112 .12194784 15795 5 . . 1 "Japan" "China" "CHN" 518 13.1191512774418 29.15 358.7112 .8065187 15795 5 . . 1 "Sweden" "Australia" "AUS" 518 4.35801056817563 29.15 358.7112 .4018736 15795 5 . . 1 "Taiwan, China" "China" "CHN" 518 43.5801056817563 29.15 358.7112 .8065187 15795 5 . . 1 "Sweden" "Australia" "AUS" 518 83.7887410796971 29.15 358.7112 .4018736 15795 5 . . 1 "Taiwan, China" "China" "CHN" 518 155.145434439179 29.15 358.7112 .8065187 15795 5 . . 1 "Germany" "China" "CHN" 521 4.57090618215061 19.52 145.76973 .4519842 15886 5 . . 1 "Japan" "China" "CHN" 521 184.147757970518 19.52 145.76973 .4519842 15886 5 . . 1 "Republic of Korea" "China" "CHN" 521 139.467717975089 19.52 145.76973 .4519842 15886 5 . . 1 "Republic of Korea" "China" "CHN" 521 139.467717975089 19.52 145.76973 .4519842 15886 5 . . 1 "Switzerland" "Hong Kong" "HKG" 521 4.57090618215061 19.52 145.76973 .04821165 15886 5 . . 1 "Switzerland" "China" "CHN" 521 45.7090618215061 19.52 145.76973 .4519842 15886 5 . . 1 "Japan" "Indonesia" "IDN" 521 162.724530910753 19.52 145.76973 .12655558 15886 5 . . 1 "USA" "Australia" "AUS" 521 87.8819517769398 19.52 145.76973 .14463495 15886 5 . . 1 "USA" "Japan" "JPN" 521 1.99977145469089 19.52 145.76973 .3947329 15886 5 . . 1 "Republic of Korea" "Thailand" "THA" 521 139.467717975089 19.52 145.76973 .11450267 15886 5 . . 1 "Netherlands" "China" "CHN" 521 139.467717975089 19.52 145.76973 .4519842 15886 5 . . 1 "USA" "China" "CHN" 521 4.57090618215061 19.52 145.76973 .4519842 15886 5 . . 1 "USA" "Hong Kong" "HKG" 521 57.1363272768826 19.52 145.76973 .04821165 15886 5 . . 1 "Japan" "Thailand" "THA" 521 212.132991658096 19.52 145.76973 .11450267 15886 5 . . 1 "Japan" "China" "CHN" 521 139.467717975089 19.52 145.76973 .4519842 15886 5 . . 1 "Japan" "China" "CHN" 521 162.724530910753 19.52 145.76973 .4519842 15886 5 . . 1 "USA" "China" "CHN" 521 162.724530910753 19.52 145.76973 .4519842 15886 5 . . 1 "Republic of Korea" "China" "CHN" 521 139.467717975089 19.52 145.76973 .4519842 15886 5 . . 1 "USA" "Japan" "JPN" 521 212.132991658096 19.52 145.76973 .3947329 15886 5 . . 1 "Japan" "Thailand" "THA" 521 162.724530910753 19.52 145.76973 .11450267 15886 5 . . 1 "USA" "Hong Kong" "HKG" 521 1.99977145469089 19.52 145.76973 .04821165 15886 5 . . 1 "USA" "China" "CHN" 521 68.5635927322592 19.52 145.76973 .4519842 15886 5 . . 1 "Taiwan, China" "China" "CHN" 521 139.467717975089 19.52 145.76973 .4519842 15886 5 . . 1 end format %tm Mdate format %tdnn/dd/CCYY Year format %tq qdate label values _merge _merge label def _merge 1 "Master only (1)", modify
Code:
variable qdate does not uniquely identify observations in the master data r(459);
I'd be grateful for your help.
Thank you
Comment