Dear all,
I have performed three stepwise regression models with backward elimination using a p-value threshold of >0.2.
These are three models targeting the same predictors but with three different related outcomes.
The results I obtain are as follows.
Model #1
Model #2
Model #3
My question to you is: how should the obtained p-values be adjusted to account for multiple testing?
P.S. I prefectly know that stepwise regression is not recommended. I carried out the analysis following the explicit request of a reviewer, and despite listing all the limitations of this method, there was no way to convince them otherwise.
Thank you all, as always.
I have performed three stepwise regression models with backward elimination using a p-value threshold of >0.2.
These are three models targeting the same predictors but with three different related outcomes.
The results I obtain are as follows.
Model #1
Code:
. xi: stepwise, pr(.2): logit mese nihss etàstroke lnagestroke lnimt lnnihss esussospettoembolicoadorigin > esco pregressoictustia sex fumo ipertensione dislipidemia diabete lnwmh lnvolume lacune, or Wald test, begin with full model: p = 0.9991 >= 0.2000, removing etàstroke p = 0.9868 >= 0.2000, removing lnnihss p = 0.9062 >= 0.2000, removing lnagestroke p = 0.8736 >= 0.2000, removing lnwmh p = 0.7877 >= 0.2000, removing pregressoictustia p = 0.5234 >= 0.2000, removing diabete p = 0.4993 >= 0.2000, removing esussospettoembolicoadoriginesco p = 0.3165 >= 0.2000, removing nihss p = 0.3173 >= 0.2000, removing lnimt p = 0.3219 >= 0.2000, removing lnvolume p = 0.2845 >= 0.2000, removing lacune p = 0.2334 >= 0.2000, removing fumo Logistic regression Number of obs = 155 LR chi2(3) = 22.90 Prob > chi2 = 0.0000 Log likelihood = -60.232057 Pseudo R2 = 0.1597 ------------------------------------------------------------------------------ mese | Odds ratio Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- sex | 2.406879 1.137686 1.86 0.063 .9530316 6.078565 dislipidemia | .173777 .0893694 -3.40 0.001 .0634219 .4761515 ipertensione | 4.321445 2.217178 2.85 0.004 1.580914 11.81272 _cons | 4.34823 2.039297 3.13 0.002 1.734217 10.90238 ------------------------------------------------------------------------------ Note: _cons estimates baseline odds.
Code:
. xi: stepwise, pr(.2): ologit gangli nihss etàstroke lnagestroke lnimt lnnihss esussospettoembolicoadori > ginesco pregressoictustia sex fumo ipertensione dislipidemia diabete lnwmh lnvolume lacune, or Wald test, begin with full model: p = 0.9817 >= 0.2000, removing dislipidemia p = 0.9150 >= 0.2000, removing pregressoictustia p = 0.8641 >= 0.2000, removing lnagestroke p = 0.8459 >= 0.2000, removing lnnihss p = 0.6806 >= 0.2000, removing ipertensione p = 0.6805 >= 0.2000, removing lnimt p = 0.6569 >= 0.2000, removing etàstroke p = 0.6656 >= 0.2000, removing lnvolume p = 0.6170 >= 0.2000, removing lacune p = 0.3279 >= 0.2000, removing fumo p = 0.2425 >= 0.2000, removing nihss p = 0.2312 >= 0.2000, removing diabete p = 0.2364 >= 0.2000, removing sex Ordered logistic regression Number of obs = 155 LR chi2(2) = 16.43 Prob > chi2 = 0.0003 Log likelihood = -182.07361 Pseudo R2 = 0.0432 -------------------------------------------------------------------------------------------------- gangli | Odds ratio Std. err. z P>|z| [95% conf. interval] ---------------------------------+---------------------------------------------------------------- lnwmh | 1.371675 .1670724 2.59 0.009 1.080373 1.741523 esussospettoembolicoadoriginesco | 3.767657 1.342956 3.72 0.000 1.873554 7.576637 ---------------------------------+---------------------------------------------------------------- /cut1 | -.1073645 .2569481 -.6109734 .3962445 /cut2 | 1.694922 .2926389 1.121361 2.268484 /cut3 | 3.879828 .461339 2.97562 4.784036 -------------------------------------------------------------------------------------------------- Note: Estimates are transformed only in the first equation to odds ratios.
Code:
. xi: stepwise, pr(.2): ologit semiovali nihss etàstroke lnagestroke lnimt lnnihss esussospettoembolicoad > originesco pregressoictustia sex fumo ipertensione dislipidemia diabete lnwmh lnvolume lacune, or Wald test, begin with full model: p = 0.8844 >= 0.2000, removing dislipidemia p = 0.8313 >= 0.2000, removing lacune p = 0.8170 >= 0.2000, removing ipertensione p = 0.7794 >= 0.2000, removing nihss p = 0.6607 >= 0.2000, removing lnimt p = 0.5467 >= 0.2000, removing diabete p = 0.5989 >= 0.2000, removing lnagestroke p = 0.5083 >= 0.2000, removing sex p = 0.4098 >= 0.2000, removing lnwmh p = 0.4467 >= 0.2000, removing lnnihss p = 0.3303 >= 0.2000, removing fumo p = 0.3035 >= 0.2000, removing etàstroke Ordered logistic regression Number of obs = 155 LR chi2(3) = 5.49 Prob > chi2 = 0.1394 Log likelihood = -186.53199 Pseudo R2 = 0.0145 -------------------------------------------------------------------------------------------------- semiovali | Odds ratio Std. err. z P>|z| [95% conf. interval] ---------------------------------+---------------------------------------------------------------- pregressoictustia | 2.072149 1.080448 1.40 0.162 .7457485 5.757707 lnvolume | .8781811 .0819464 -1.39 0.164 .7314005 1.054418 esussospettoembolicoadoriginesco | 1.636701 .5384571 1.50 0.134 .8588816 3.11893 ---------------------------------+---------------------------------------------------------------- /cut1 | -3.277187 .4679406 -4.194333 -2.36004 /cut2 | -.4312944 .2082017 -.8393622 -.0232265 /cut3 | 1.485078 .2430798 1.008651 1.961506 /cut4 | 4.577012 .7287992 3.148592 6.005432 -------------------------------------------------------------------------------------------------- Note: Estimates are transformed only in the first equation to odds ratios.
P.S. I prefectly know that stepwise regression is not recommended. I carried out the analysis following the explicit request of a reviewer, and despite listing all the limitations of this method, there was no way to convince them otherwise.
Thank you all, as always.
Comment