1.
firthlogit dv1 city base territory border height pop ln_63 mod1r_c loss dv1_lag
initial: penalized log likelihood = -563.45943
rescale: penalized log likelihood = -563.45943
Iteration 0: penalized log likelihood = -563.45943 (not concave)
Iteration 1: penalized log likelihood = -560.84998 (not concave)
Iteration 2: penalized log likelihood = -556.98981
Iteration 3: penalized log likelihood = -545.34792
Iteration 4: penalized log likelihood = -544.1852
Iteration 5: penalized log likelihood = -543.9907
Iteration 6: penalized log likelihood = -543.99019
Iteration 7: penalized log likelihood = -543.99019
Number of obs = 104,821
Wald chi2(10) = 43.84
Penalized log likelihood = -543.99019 Prob > chi2 = 0.0000
------------------------------------------------------------------------------
dv1 | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
city | .9560908 .2845525 3.36 0.001 .3983782 1.513803
base | -.2890522 .2242761 -1.29 0.197 -.7286253 .1505209
territory | .1109483 .0907729 1.22 0.222 -.0669634 .2888599
border | .3606393 .1794106 2.01 0.044 .0090009 .7122778
height | -.0388977 .0217395 -1.79 0.074 -.0815063 .003711
pop | .1534958 .1372472 1.12 0.263 -.1155037 .4224953
ln_63 | -.9431281 .4695627 -2.01 0.045 -1.863454 -.0228021
mod1r_c | -.1244403 .1046199 -1.19 0.234 -.3294916 .080611
loss | .0000518 .0000161 3.22 0.001 .0000202 .0000835
dv1_lag | 2.746286 1.431237 1.92 0.055 -.0588876 5.551459
_cons | -7.84713 3.080853 -2.55 0.011 -13.88549 -1.808769
------------------------------------------------------------------------------
. margins, at ( loss = (0 (100000) 334855)) atmeans expression(invlogit(predict(xb)))
Adjusted predictions Number of obs = 104,821
Model VCE : OIM
Expression : invlogit(predict(xb))
1._at : city = .5411797 (mean)
base = 2.956026 (mean)
territory = 3.146936 (mean)
border = 11.05219 (mean)
height = 5.028224 (mean)
pop = 6.826342 (mean)
ln_63 = 4.371147 (mean)
mod1r_c = 3.105943 (mean)
loss = 0
dv1_lag = .0004675 (mean)
2._at : city = .5411797 (mean)
base = 2.956026 (mean)
territory = 3.146936 (mean)
border = 11.05219 (mean)
height = 5.028224 (mean)
pop = 6.826342 (mean)
ln_63 = 4.371147 (mean)
mod1r_c = 3.105943 (mean)
loss = 100000
dv1_lag = .0004675 (mean)
3._at : city = .5411797 (mean)
base = 2.956026 (mean)
territory = 3.146936 (mean)
border = 11.05219 (mean)
height = 5.028224 (mean)
pop = 6.826342 (mean)
ln_63 = 4.371147 (mean)
mod1r_c = 3.105943 (mean)
loss = 200000
dv1_lag = .0004675 (mean)
4._at : city = .5411797 (mean)
base = 2.956026 (mean)
territory = 3.146936 (mean)
border = 11.05219 (mean)
height = 5.028224 (mean)
pop = 6.826342 (mean)
ln_63 = 4.371147 (mean)
mod1r_c = 3.105943 (mean)
loss = 300000
dv1_lag = .0004675 (mean)
------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_at |
1 | .0005502 .0000833 6.61 0.000 .000387 .0007134
2 | .0894836 .131297 0.68 0.496 -.1678539 .3468211
3 | .946078 .1642868 5.76 0.000 .6240819 1.268074
4 | .9996808 .0015415 648.49 0.000 .9966595 1.002702
------------------------------------------------------------------------------
2.
firthlogit dv3 city base territory border height pop ln_63 mod1r_c success dv3_lag
initial: penalized log likelihood = -958.84283
rescale: penalized log likelihood = -958.84283
Iteration 0: penalized log likelihood = -958.84283 (not concave)
Iteration 1: penalized log likelihood = -956.48163 (not concave)
Iteration 2: penalized log likelihood = -951.33286
Iteration 3: penalized log likelihood = -951.07602 (not concave)
Iteration 4: penalized log likelihood = -949.00891 (not concave)
Iteration 5: penalized log likelihood = -948.02678
Iteration 6: penalized log likelihood = -940.91648 (not concave)
Iteration 7: penalized log likelihood = -940.17687
Iteration 8: penalized log likelihood = -939.84826
Iteration 9: penalized log likelihood = -939.84762
Iteration 10: penalized log likelihood = -939.84762
Number of obs = 130,505
Wald chi2(10) = 49.57
Penalized log likelihood = -939.84762 Prob > chi2 = 0.0000
------------------------------------------------------------------------------
dv3 | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
city | -.1029971 .1925142 -0.54 0.593 -.4803181 .2743238
base | -.5766928 .1560966 -3.69 0.000 -.8826365 -.270749
territory | .1774427 .0671192 2.64 0.008 .0458914 .308994
border | -.1745738 .079129 -2.21 0.027 -.3296638 -.0194839
height | .0089205 .005544 1.61 0.108 -.0019456 .0197866
pop | -.0586204 .0956289 -0.61 0.540 -.2460495 .1288087
ln_63 | .1637436 .392236 0.42 0.676 -.6050248 .932512
mod1r_c | .0310071 .0806966 0.38 0.701 -.1271553 .1891696
success | .0001233 .000041 3.01 0.003 .0000429 .0002037
dv3_lag | 1.388634 1.420496 0.98 0.328 -1.395486 4.172755
_cons | -4.364281 2.083713 -2.09 0.036 -8.448284 -.2802783
------------------------------------------------------------------------------
. margins, at (success = (0 (100000) 693654)) atmeans expression(invlogit(predict(xb)))
Adjusted predictions Number of obs = 130,505
Model VCE : OIM
Expression : invlogit(predict(xb))
1._at : city = .5424543 (mean)
base = 2.961185 (mean)
territory = 3.146799 (mean)
border = 11.05412 (mean)
height = 5.074115 (mean)
pop = 6.830019 (mean)
ln_63 = 4.376774 (mean)
mod1r_c = 3.107196 (mean)
success = 0
dv3_lag = .0011111 (mean)
2._at : city = .5424543 (mean)
base = 2.961185 (mean)
territory = 3.146799 (mean)
border = 11.05412 (mean)
height = 5.074115 (mean)
pop = 6.830019 (mean)
ln_63 = 4.376774 (mean)
mod1r_c = 3.107196 (mean)
success = 100000
dv3_lag = .0011111 (mean)
3._at : city = .5424543 (mean)
base = 2.961185 (mean)
territory = 3.146799 (mean)
border = 11.05412 (mean)
height = 5.074115 (mean)
pop = 6.830019 (mean)
ln_63 = 4.376774 (mean)
mod1r_c = 3.107196 (mean)
success = 200000
dv3_lag = .0011111 (mean)
4._at : city = .5424543 (mean)
base = 2.961185 (mean)
territory = 3.146799 (mean)
border = 11.05412 (mean)
height = 5.074115 (mean)
pop = 6.830019 (mean)
ln_63 = 4.376774 (mean)
mod1r_c = 3.107196 (mean)
success = 300000
dv3_lag = .0011111 (mean)
5._at : city = .5424543 (mean)
base = 2.961185 (mean)
territory = 3.146799 (mean)
border = 11.05412 (mean)
height = 5.074115 (mean)
pop = 6.830019 (mean)
ln_63 = 4.376774 (mean)
mod1r_c = 3.107196 (mean)
success = 400000
dv3_lag = .0011111 (mean)
6._at : city = .5424543 (mean)
base = 2.961185 (mean)
territory = 3.146799 (mean)
border = 11.05412 (mean)
height = 5.074115 (mean)
pop = 6.830019 (mean)
ln_63 = 4.376774 (mean)
mod1r_c = 3.107196 (mean)
success = 500000
dv3_lag = .0011111 (mean)
7._at : city = .5424543 (mean)
base = 2.961185 (mean)
territory = 3.146799 (mean)
border = 11.05412 (mean)
height = 5.074115 (mean)
pop = 6.830019 (mean)
ln_63 = 4.376774 (mean)
mod1r_c = 3.107196 (mean)
success = 600000
dv3_lag = .0011111 (mean)
------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_at |
1 | .0008755 .0000853 10.26 0.000 .0007083 .0010428
2 | .9950002 .0204 48.77 0.000 .955017 1.034983
3 | 1 2.20e-07 4.5e+06 0.000 .9999995 1
4 | 1 1.73e-09 5.8e+08 0.000 1 1
5 | 1 . . . . .
6 | 1 . . . . .
7 | 1 . . . . .
------------------------------------------------------------------------------
Hello, I am trying to calculate predicted probabilities for 'loss' and 'success' in each model below. However, in the first case, the results indicate that as 'loss' increases, the probability of DV1 rises by approximately 181,573%, while holding all other independent variables constant at their mean values. I am uncertain whether this result is correct because the percentage increase seems unusually high.
In the second case, the margins command fails to provide the predicted probabilities. Could anyone please advise me on what steps I should take to address these issues in both cases?
Thank you very much for your help in advance!
Comment