Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • VIF, uncentered in GMM Regression

    Hello everyone,

    As part of a robustness analysis I'm doing a GMM analysis.

    Basically I used an OLS analysis with Fixed effect, here is my line of code :


    Code:
    regress Qtobin_w centBWOMEN centPERF c.centPERF#c.centBWOMEN centSIZE c.centSIZE#c.centBWOMEN c.centBWOMEN#i.quota  lnAGE  indep CEOChairmanDuality uncemployement popgrwoth corruption  GDPgrowth Dummylegalsystem quota i.Year i.NAICS2digit, robust
    Here are the VIF results:

    Code:
     Variable |       VIF       1/VIF  
    -------------+----------------------
      centBWOMEN |      1.59    0.627641
        centPERF |      1.48    0.676269
      c.centPERF#|
    c.centBWOMEN |      1.18    0.847931
        centSIZE |      1.19    0.838239
      c.centSIZE#|
    c.centBWOMEN |      1.07    0.932262
           quota#|
    c.centBWOMEN |
              1  |      1.52    0.658244
           lnAGE |      1.12    0.891564
           indep |      1.75    0.570161
    CEOChairma~y |      1.15    0.871665
    uncemploye~t |      1.34    0.744624
       popgrwoth |      1.83    0.545460
      corruption |      1.63    0.611942
           lnGDP |      1.86    0.537452
    Dummylegal~m |      2.59    0.385997
           quota |      1.44    0.692453

    VIFs are therefore low


    Now for robustness, I use a GMM :


    Code:
    ivreg2 Qtobin_w (centBWOMEN = L1.centBWOMEN L2.centBWOMEN) centPERF c.centPERF#c.centBWOMEN centSIZE c.centSIZE#c.centBWOMEN c.centBWOMEN#i.quota  lnAGE  indep CEOChairmanDuality uncemployement popgrwoth corruption GDPgrowth Dummylegalsystem quota i.Year i.NAICS2digit, gmm2s robust


    As you know, since this is a GMM, I'm obliged to do a VIF uncentered. Here are the results:


    Code:
     vif, uncentered
    
        Variable |       VIF       1/VIF  
    -------------+----------------------
      centBWOMEN |      1.62    0.616670
        centPERF |      1.49    0.670903
      c.centPERF#|
    c.centBWOMEN |      1.22    0.820298
        centSIZE |      1.21    0.829305
      c.centSIZE#|
    c.centBWOMEN |      1.07    0.933065
           quota#|
    c.centBWOMEN |
              1  |      1.66    0.601833
           lnAGE |     16.60    0.060248
           indep |     11.92    0.083915
    CEOChairma~y |      1.83    0.547125
    uncemploye~t |      5.22    0.191751
       popgrwoth |      3.66    0.273053
      corruption |      6.16    0.162296
       GDPgrowth |      4.55    0.219929
    Dummylegal~m |      6.10    0.163808
           quota |      1.62    0.615692



    As you can see, I have a few variables with a high uncentered VIF: lnAGE and indep.


    My questions are:

    Should I use the VIF results from the classical regression or the uncentered VIF results from the GMM regression?

    Lastly, is it correct to include indicator variables by year and by sector in a GMM (xtset company Year)?


    Thank you for your answers


    Loïc Dubois
Working...
X