Hello,
I run a relatively simple melogit model aiming to create a plot with the observed outcome %, the predicted and the 95% confidence interval of predictions. Mainly my problem is in failing to extract the correct 95CIs. I apologise in advance for the long message, but I hope it is easy to follow.
The observed and predicted % are very similar as expected in this example, by the CIs are way off.
Following this earlier post https://www.statalist.org/forums/for...tic-regression I also tried:
but these results even further differ to the observed and predicted % as above, let alone the CIs. There must be something fundamental that I am missing here, but I can't see it.
I run a relatively simple melogit model aiming to create a plot with the observed outcome %, the predicted and the 95% confidence interval of predictions. Mainly my problem is in failing to extract the correct 95CIs. I apologise in advance for the long message, but I hope it is easy to follow.
Code:
melogit outc sty sty2 [pweight=pweight] || pidp: , vce(cluster psu) Fitting fixed-effects model: Iteration 0: log likelihood = -8085.4625 Iteration 1: log likelihood = -8075.9859 Iteration 2: log likelihood = -8075.9713 Iteration 3: log likelihood = -8075.9713 Refining starting values: Grid node 0: log likelihood = -7812.3482 Fitting full model: Iteration 0: log pseudolikelihood = -7812.3482 Iteration 1: log pseudolikelihood = -7570.5406 Iteration 2: log pseudolikelihood = -7538.8878 Iteration 3: log pseudolikelihood = -7537.6672 Iteration 4: log pseudolikelihood = -7537.6738 Iteration 5: log pseudolikelihood = -7537.6742 Mixed-effects logistic regression Number of obs = 18,648 Group variable: pidp Number of groups = 10,958 Obs per group: min = 1 avg = 1.7 max = 4 Integration method: mvaghermite Integration pts. = 7 Wald chi2(2) = 157.47 Log pseudolikelihood = -7537.6742 Prob > chi2 = 0.0000 (Std. Err. adjusted for 3,492 clusters in psu) ------------------------------------------------------------------------------ | Robust outc | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- sty | -.0110251 .0341653 -0.32 0.747 -.0779878 .0559377 sty2 | .0088006 .0023396 3.76 0.000 .004215 .0133862 _cons | -3.266937 .1279833 -25.53 0.000 -3.51778 -3.016095 -------------+---------------------------------------------------------------- pidp | var(_cons)| 4.737455 .3739014 4.05849 5.530008 ------------------------------------------------------------------------------ predict pred, marginal predict xb, xb predict stdp, stdp // SE of linear prediction generate lb = invlogit(xb - invnormal(0.975)*stdp) generate ub = invlogit(xb + invnormal(0.975)*stdp) preserve collapse (mean) outc pred lb ub [pweight=pweight], by(sty) list, noobs restore +-------------------------------------------------+ | sty outc pred lb ub | |-------------------------------------------------| | 1 .1268362 .1214299 .0298667 .044889 | | 2 .1237994 .1225502 .0310577 .0444801 | | 3 .1158695 .1249783 .032453 .0453627 | | 4 .1359755 .1287696 .0342034 .0474336 | | 5 .1431683 .1340086 .0365179 .0506257 | |-------------------------------------------------| | 6 .1447255 .1408075 .039633 .0549466 | | 7 .163366 .1493042 .0438101 .0605016 | | 8 .1717911 .1596582 .0493486 .0675113 | | 9 .1688607 .1720452 .0565906 .0763523 | | 10 .19648 .1866513 .0658945 .0876459 | |-------------------------------------------------| | 11 .2013144 .2036682 .0775555 .1024173 | | 12 .2112961 .2232932 .0917171 .1222753 | | 13 .238616 .2457393 .1084317 .1494319 | | 14 .260764 .2712533 .127895 .1864806 |
Following this earlier post https://www.statalist.org/forums/for...tic-regression I also tried:
Code:
margins, at(sty = (1(1)14)) predict(mu fixedonly) saving(margins, replace) ------------------------------------------------------------------------------ | Delta-method | Margin Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- _at | 1 | .0633144 .0142823 4.43 0.000 .0353217 .0913072 2 | .0626769 .0122949 5.10 0.000 .0385793 .0867745 3 | .0620452 .01038 5.98 0.000 .0417008 .0823897 4 | .0614194 .0085593 7.18 0.000 .0446436 .0781952 5 | .0607994 .0068751 8.84 0.000 .0473245 .0742743 6 | .0601851 .0054156 11.11 0.000 .0495707 .0707996 7 | .0595766 .0043624 13.66 0.000 .0510263 .0681268 8 | .0589737 .0039959 14.76 0.000 .0511419 .0668055 9 | .0583764 .0044437 13.14 0.000 .0496669 .0670859 10 | .0577847 .0054764 10.55 0.000 .0470512 .0685183 11 | .0571986 .006807 8.40 0.000 .0438571 .07054 12 | .0566179 .008272 6.84 0.000 .040405 .0728308 13 | .0560427 .0097941 5.72 0.000 .0368466 .0752388 14 | .0554729 .0113358 4.89 0.000 .0332551 .0776906 ------------------------------------------------------------------------------
Comment