Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • GMM vs OLS linear prediction values

    edit: i figured it out hehe.

    I ran the example from the GMM documentation, specifically "example 1" about linear regression using GMM.

    Code:
    . gmm (mpg- {xb: weight length}- {b0}), instruments(weight length)
    . regress mpg weight length, vce(robust)
    and i got identical results.

    Code:
    . gmm (mpg- {xb: weight length}- {b0}), instruments(weight length)
    
    Step 1
    Iteration 0:   GMM criterion Q(b) =   475.4138  
    Iteration 1:   GMM criterion Q(b) =  2.696e-20  
    Iteration 2:   GMM criterion Q(b) =  2.622e-27  
    
    Step 2
    Iteration 0:   GMM criterion Q(b) =  4.001e-28  
    Iteration 1:   GMM criterion Q(b) =  1.368e-31  
    
    note: model is exactly identified.
    
    GMM estimation
    
    Number of parameters =   3
    Number of moments    =   3
    Initial weight matrix: Unadjusted                 Number of obs   =         74
    GMM weight matrix:     Robust
    
    ------------------------------------------------------------------------------
                 |               Robust
                 | Coefficient  std. err.      z    P>|z|     [95% conf. interval]
    -------------+----------------------------------------------------------------
          weight |  -.0038515   .0019472    -1.98   0.048    -.0076679   -.0000351
          length |  -.0795935   .0677532    -1.17   0.240    -.2123873    .0532003
    -------------+----------------------------------------------------------------
             /b0 |   47.88487   7.506024     6.38   0.000     33.17334    62.59641
    ------------------------------------------------------------------------------
    Instruments for equation 1: weight length _cons
    Code:
    . regress mpg weight length, vce(robust)
    
    Linear regression                               Number of obs     =         74
                                                    F(2, 71)          =      55.38
                                                    Prob > F          =     0.0000
                                                    R-squared         =     0.6614
                                                    Root MSE          =     3.4137
    
    ------------------------------------------------------------------------------
                 |               Robust
             mpg | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
    -------------+----------------------------------------------------------------
          weight |  -.0038515   .0019879    -1.94   0.057    -.0078152    .0001122
          length |  -.0795935   .0691697    -1.15   0.254     -.217514    .0583271
           _cons |   47.88487   7.662958     6.25   0.000     32.60537    63.16438
    ------------------------------------------------------------------------------
    I noticed that that the predicted values I got from `predict ... , xb` are different between the gmm one and the regress one. I further noticed that the GMM predicted values is the OLS one minus the constant. Here some example of the predicted values I got:
    .
    mpg weight length gmm ols
    22 2,930 186 -26.08 21.79
    17 3,350 173 -26.67 21.21
    .
    why are they different?

    Thanks in advance.
    Last edited by rizki taufik; 20 Nov 2024, 21:32.

  • #2
    In your GMM model the constant is its own equation, so if you ask for the linear predictor of the xb equation, you don't include the constant.
    ---------------------------------
    Maarten L. Buis
    University of Konstanz
    Department of history and sociology
    box 40
    78457 Konstanz
    Germany
    http://www.maartenbuis.nl
    ---------------------------------

    Comment

    Working...
    X