I have a group of 237700 patient with 770 of them being the treatment group. I want to apply propensity score matching to choose 770 from the control group matching with the treatment patients. Then I do the post matching analysis for the outcomes. I did the Logistic and the predict pscore commands, but I have problems with the code for the matching
I would appreciate any help on how to get the right appropriate code.
Attached the dataex for the sample of my observations. Listed 100 out of 77035 observations. PEG is my treatment
I would appreciate any help on how to get the right appropriate code.
Attached the dataex for the sample of my observations. Listed 100 out of 77035 observations. PEG is my treatment
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float PEG int AGE byte(RACE FEMALE) float(ynel1 ynel6 ynel9 ynel10 ynel11) 0 61 1 1 1 0 0 0 1 0 73 1 1 1 0 1 0 1 0 66 2 0 1 0 0 0 0 0 41 1 0 1 0 0 1 0 0 72 1 0 0 0 1 0 1 0 55 6 1 1 0 1 0 1 0 72 2 0 0 0 0 0 0 0 53 3 1 0 0 0 0 0 0 87 1 0 0 0 1 0 1 0 54 2 1 1 0 0 0 1 0 68 1 0 1 0 1 1 0 0 77 1 1 1 0 0 0 0 0 69 1 0 1 0 1 1 0 0 70 1 0 0 0 0 0 0 0 84 1 0 1 0 0 0 0 0 52 1 0 0 0 0 0 1 0 55 1 0 0 0 0 0 0 0 54 1 1 1 0 0 0 0 0 81 1 1 0 0 0 0 1 0 67 1 0 0 0 0 0 0 0 71 1 1 0 0 0 0 0 0 64 4 0 0 0 0 0 0 0 53 1 0 0 0 0 1 0 0 70 2 1 1 0 0 0 1 0 42 2 1 0 0 0 0 1 0 36 1 0 0 1 1 0 0 0 48 2 1 1 0 0 0 0 0 72 2 1 0 0 0 1 0 0 30 1 0 1 0 0 0 0 0 8 3 0 0 0 0 0 0 0 34 6 1 0 0 0 0 0 0 45 3 0 1 0 1 0 0 0 61 1 0 0 0 0 0 1 0 53 3 1 0 0 0 0 0 0 69 1 1 1 0 0 0 1 0 61 2 1 1 0 1 0 0 0 48 1 1 0 0 0 0 1 0 76 6 0 0 0 1 0 1 0 42 2 1 1 0 0 0 1 0 36 2 1 0 0 0 0 0 0 29 3 1 0 0 0 0 0 0 64 1 0 1 0 0 0 1 0 71 1 0 1 0 0 0 1 0 35 1 0 0 0 0 0 1 0 50 1 0 0 0 0 0 1 0 40 1 0 0 0 0 0 0 0 55 1 1 0 0 0 0 0 0 68 1 0 1 0 0 0 0 0 75 1 0 0 0 0 0 0 0 71 1 0 0 0 0 0 1 0 83 1 0 1 0 0 0 1 0 82 1 1 0 0 0 0 1 0 46 1 0 0 0 0 0 1 0 76 4 0 0 0 0 0 0 0 58 1 1 0 0 0 0 1 0 75 1 0 1 0 0 0 0 0 64 4 0 0 0 0 0 0 0 84 1 0 1 0 1 0 0 0 73 4 1 0 0 0 0 0 0 34 2 1 1 0 0 0 0 0 50 1 1 0 0 0 0 0 0 69 1 1 1 0 1 0 0 0 65 1 1 0 0 0 0 0 0 51 1 0 1 0 0 0 1 0 56 3 0 1 0 0 0 1 0 48 2 1 1 0 0 0 0 0 77 1 0 1 0 0 0 0 0 59 2 1 1 0 0 0 1 0 80 1 1 0 0 0 0 0 0 69 1 0 1 0 1 0 1 0 42 6 1 0 0 0 0 0 0 67 1 1 1 0 0 0 0 0 69 1 0 0 0 0 0 0 0 67 1 0 0 0 0 0 1 0 34 1 1 0 0 0 0 1 0 29 1 0 1 0 0 0 1 0 45 1 1 0 0 0 0 1 0 40 1 0 1 0 0 0 1 0 66 1 0 1 0 0 0 0 0 65 1 1 1 0 0 0 1 0 67 1 1 1 0 0 0 1 0 60 3 0 0 0 0 0 1 0 70 2 0 0 0 0 0 1 0 76 1 0 0 0 0 1 0 0 70 1 0 0 0 1 0 1 0 64 1 0 1 0 0 0 0 0 78 1 1 1 0 0 0 0 0 41 2 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 64 1 0 1 0 0 0 1 0 32 1 0 0 0 0 0 0 0 79 4 0 0 0 0 0 1 0 67 1 1 0 0 0 0 1 0 28 1 1 0 0 0 0 0 0 28 1 1 0 0 0 0 0 0 54 6 0 0 0 0 0 1 0 56 2 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 87 1 0 1 0 0 0 0 0 63 2 0 0 0 0 0 1 end label values ynel1 ynlab label values ynel6 ynlab label values ynel9 ynlab label values ynel10 ynlab label values ynel11 ynlab label def ynlab 0 "Absent", modify label def ynlab 1 "Present", modify label var AGE "Age in years at admission" label var RACE "Race (uniform)" label var FEMALE "Indicator of sex" label var ynel1 "Congestive Heart Failure" label var ynel6 "Hypertension, Uncomplicated" label var ynel9 "Chronic Pulmonary Disease" label var ynel10 "Diabetes, Uncomplicated" label var ynel11 "Diabetes, Complicated"
Comment