Testing instrument relevance after ivregress using first option. I have an abbreviated version of my model below for abbreviated output. The required F statistic would test the hypothesis that each of the two instruments are weak. The output F statistic from the first stage is identical to the F statistic from OLS estimation on all of the exogenous (included and excluded) variables. Some documentation suggests that first stage output would be the necessary F statistic to test relevance, but this does not seem to be the case.
Assuming I'm correct, then F-statistics must be developed after separate estimations of each excluded instrument on all of the exogenous variables.
Any comment?
Here is my abbreviated output demonstrating the identical F statistics:
. */ abbreviated model for abbreviated output
. */ suppose two endogenous variables and two instruments
. . ivregress 2sls d.gtotpay d.(style_msa) (d.comp d.hmo_sim = d.frac_comp_state_gen d.frac_hmo_sim_state_gen) if cap_person!=1, vce(robust) first
First-stage regressions
-----------------------
Number of obs = 1,692,863
F(3, 1692859) = 2074.65
Prob > F = 0.0000
R-squared = 0.0077
Adj R-squared = 0.0077
Root MSE = 0.1574
----------------------------------------------------------------------------------------
| Robust
D.comp | Coefficient std. err. t P>|t| [95% conf. interval]
-----------------------+----------------------------------------------------------------
style_msa |
D1. | .0001779 .0000108 16.51 0.000 .0001568 .000199
|
frac_comp_state_gen |
D1. | .7236218 .0101824 71.07 0.000 .7036647 .7435789
|
frac_hmo_sim_state_gen |
D1. | .0762913 .0029813 25.59 0.000 .070448 .0821346
|
_cons | -.0096025 .0003209 -29.93 0.000 -.0102313 -.0089736
----------------------------------------------------------------------------------------
Number of obs = 1,692,863
F(3, 1692859) = 1204.13
Prob > F = 0.0000
R-squared = 0.0182
Adj R-squared = 0.0182
Root MSE = 0.1307
----------------------------------------------------------------------------------------
| Robust
D.hmo_sim | Coefficient std. err. t P>|t| [95% conf. interval]
-----------------------+----------------------------------------------------------------
style_msa |
D1. | -.0001198 .0000232 -5.16 0.000 -.0001653 -.0000743
|
frac_comp_state_gen |
D1. | .2146812 .0058788 36.52 0.000 .2031589 .2262035
|
frac_hmo_sim_state_gen |
D1. | .4678168 .0082113 56.97 0.000 .4517229 .4839107
|
_cons | .0034223 .0006378 5.37 0.000 .0021722 .0046723
----------------------------------------------------------------------------------------
Instrumental-variables 2SLS regression Number of obs = 1,692,863
Wald chi2(3) = 54.14
Prob > chi2 = 0.0000
R-squared = .
Root MSE = 25296
------------------------------------------------------------------------------
| Robust
D.gtotpay | Coefficient std. err. z P>|z| [95% conf. interval]
-------------+----------------------------------------------------------------
comp |
D1. | 1512.331 1372.195 1.10 0.270 -1177.121 4201.784
|
hmo_sim |
D1. | -2098.223 818.5431 -2.56 0.010 -3702.538 -493.9079
|
style_msa |
D1. | 11.55352 1.765345 6.54 0.000 8.093507 15.01353
|
_cons | -177.6334 53.6 -3.31 0.001 -282.6875 -72.57936
------------------------------------------------------------------------------
Endogenous: D.comp D.hmo_sim
Exogenous: D.style_msa D.frac_comp_state_gen D.frac_hmo_sim_state_gen
. */ OLS estimation on the first endogenous variable
. reg d.comp d.(style_msa frac_comp_state_gen frac_hmo_sim_state_gen) if cap_person!=1, vce(robust) first
Linear regression Number of obs = 1,692,863
F(3, 1692859) = 2074.65
Prob > F = 0.0000
R-squared = 0.0077
Root MSE = .15738
----------------------------------------------------------------------------------------
| Robust
D.comp | Coefficient std. err. t P>|t| [95% conf. interval]
-----------------------+----------------------------------------------------------------
style_msa |
D1. | .0001779 .0000108 16.51 0.000 .0001568 .000199
|
frac_comp_state_gen |
D1. | .7236218 .0101824 71.07 0.000 .7036647 .7435789
|
frac_hmo_sim_state_gen |
D1. | .0762913 .0029813 25.59 0.000 .070448 .0821346
|
_cons | -.0096025 .0003209 -29.93 0.000 -.0102313 -.0089736
Assuming I'm correct, then F-statistics must be developed after separate estimations of each excluded instrument on all of the exogenous variables.
Any comment?
Here is my abbreviated output demonstrating the identical F statistics:
. */ abbreviated model for abbreviated output
. */ suppose two endogenous variables and two instruments
. . ivregress 2sls d.gtotpay d.(style_msa) (d.comp d.hmo_sim = d.frac_comp_state_gen d.frac_hmo_sim_state_gen) if cap_person!=1, vce(robust) first
First-stage regressions
-----------------------
Number of obs = 1,692,863
F(3, 1692859) = 2074.65
Prob > F = 0.0000
R-squared = 0.0077
Adj R-squared = 0.0077
Root MSE = 0.1574
----------------------------------------------------------------------------------------
| Robust
D.comp | Coefficient std. err. t P>|t| [95% conf. interval]
-----------------------+----------------------------------------------------------------
style_msa |
D1. | .0001779 .0000108 16.51 0.000 .0001568 .000199
|
frac_comp_state_gen |
D1. | .7236218 .0101824 71.07 0.000 .7036647 .7435789
|
frac_hmo_sim_state_gen |
D1. | .0762913 .0029813 25.59 0.000 .070448 .0821346
|
_cons | -.0096025 .0003209 -29.93 0.000 -.0102313 -.0089736
----------------------------------------------------------------------------------------
Number of obs = 1,692,863
F(3, 1692859) = 1204.13
Prob > F = 0.0000
R-squared = 0.0182
Adj R-squared = 0.0182
Root MSE = 0.1307
----------------------------------------------------------------------------------------
| Robust
D.hmo_sim | Coefficient std. err. t P>|t| [95% conf. interval]
-----------------------+----------------------------------------------------------------
style_msa |
D1. | -.0001198 .0000232 -5.16 0.000 -.0001653 -.0000743
|
frac_comp_state_gen |
D1. | .2146812 .0058788 36.52 0.000 .2031589 .2262035
|
frac_hmo_sim_state_gen |
D1. | .4678168 .0082113 56.97 0.000 .4517229 .4839107
|
_cons | .0034223 .0006378 5.37 0.000 .0021722 .0046723
----------------------------------------------------------------------------------------
Instrumental-variables 2SLS regression Number of obs = 1,692,863
Wald chi2(3) = 54.14
Prob > chi2 = 0.0000
R-squared = .
Root MSE = 25296
------------------------------------------------------------------------------
| Robust
D.gtotpay | Coefficient std. err. z P>|z| [95% conf. interval]
-------------+----------------------------------------------------------------
comp |
D1. | 1512.331 1372.195 1.10 0.270 -1177.121 4201.784
|
hmo_sim |
D1. | -2098.223 818.5431 -2.56 0.010 -3702.538 -493.9079
|
style_msa |
D1. | 11.55352 1.765345 6.54 0.000 8.093507 15.01353
|
_cons | -177.6334 53.6 -3.31 0.001 -282.6875 -72.57936
------------------------------------------------------------------------------
Endogenous: D.comp D.hmo_sim
Exogenous: D.style_msa D.frac_comp_state_gen D.frac_hmo_sim_state_gen
. */ OLS estimation on the first endogenous variable
. reg d.comp d.(style_msa frac_comp_state_gen frac_hmo_sim_state_gen) if cap_person!=1, vce(robust) first
Linear regression Number of obs = 1,692,863
F(3, 1692859) = 2074.65
Prob > F = 0.0000
R-squared = 0.0077
Root MSE = .15738
----------------------------------------------------------------------------------------
| Robust
D.comp | Coefficient std. err. t P>|t| [95% conf. interval]
-----------------------+----------------------------------------------------------------
style_msa |
D1. | .0001779 .0000108 16.51 0.000 .0001568 .000199
|
frac_comp_state_gen |
D1. | .7236218 .0101824 71.07 0.000 .7036647 .7435789
|
frac_hmo_sim_state_gen |
D1. | .0762913 .0029813 25.59 0.000 .070448 .0821346
|
_cons | -.0096025 .0003209 -29.93 0.000 -.0102313 -.0089736
Comment