Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Comparing the difference in coefficients of the same variables in different regression models

    Hello!
    I would like to ask about the stata command for comparing the difference in coefficients of the same variables in different regression models.
    What I want to do is different from the grouping test performed for categorical variables. Here is the example :
    Regression 1: reghdfe y x controls if M==1 ,absorb(id year) vce(cluster id)
    Regression 2: reghdfe y x controls if N==1 ,absorb(id year) vce(cluster id)
    It should be noted that some of the observations are in both M and N sample; id is the firm fixed effect

    The question is: now I need to compare whether the coefficient of X in regression 1 is significantly larger than the coefficient of X in regression 2 (need to find out the two-tailed p-value), how do I write the code in Stata?
    Looking forward to your reply, many thanks!

  • #2
    You can duplicate part of the data and estimate one model with interactions (in this example, the samples don’t overlap, but the idea is similar: https://www.statalist.org/forums/for...erent-outcomes). Alternatively, you can estimate with regress and then use suest followed by test if the number of panels and years is not too large. Note that reghdfe is from https://github.com/sergiocorreia/reghdfe (FAQ Advice #12).

    Code:
    help suest
    help test
    Last edited by Andrew Musau; 12 Nov 2024, 10:17.

    Comment


    • #3
      Is there some reason to estimate the models separately?

      As Andrew suggests, you can estimate with the full sample and have a group interaction on X.

      Comment


      • #4
        Thank you for your replies!

        In fact my sample is divided into three groups, A, B, and C, where AB is the M=1 group and BC is the N=1 group.

        I was discussing my question with other team members today and they thought that the problem could be solved by appending the samples from the M=1 and N=1 groups to a new sample and then using “bdiff” command. Or I can just apply the following calculation to find the z value and then calculate the corresponding t value.

        reghdfe y x $z if M==1, absorb(year indid firm) vce(cluster firm)
        est store M

        reghdfe y x $z if N==1, absorb(year indid firm) vce(cluster firm)
        est store N

        **计算Z统计量
        Z = (β1 - β2)/(SE1^2+SE2^2)^1/2

        Comment


        • #5
          Originally posted by Andrew Musau View Post
          You can duplicate part of the data and estimate one model with interactions (in this example, the samples don’t overlap, but the idea is similar: https://www.statalist.org/forums/for...erent-outcomes). Alternatively, you can estimate with regress and then use suest followed by test if the number of panels and years is not too large. Note that reghdfe is from https://github.com/sergiocorreia/reghdfe (FAQ Advice #12).

          Code:
          help suest
          help test
          Thank you for your reply!

          Comment


          • #6
            Originally posted by George Ford View Post
            Is there some reason to estimate the models separately?

            As Andrew suggests, you can estimate with the full sample and have a group interaction on X.
            Thank you for your reply!

            Comment


            • #7
              If M is AB and N is BC, then the two samples are not independent (overlap in B). The error terms between the two regressions/groups would be correlated. Would it make more sense to get coefficients for A, B, and C separately, or just analyze A and C?

              I suppose you could estimate for 3 groups, and then lincom a test of weighted average coefficients. ???

              This is a tricky one, I think.

              Comment


              • #8
                Using suest or the interactions approach is valid for overlapping data. From

                Code:
                help suest
                suest combines the estimation results -- parameter estimates and associated (co)variance matrices -- stored under namelist into one parameter vector and simultaneous (co)variance matrix of the sandwich/robust type. This (co)variance matrix is appropriate even if the estimates were obtained on the same or on overlapping data.

                Comment


                • #9
                  Good to know. Thanks Andrew.

                  Comment


                  • #10
                    Originally posted by Andrew Musau View Post
                    Using suest or the interactions approach is valid for overlapping data. From

                    Code:
                    help suest
                    Dear Andrew,

                    Thanks for your reply, I ended up using Federico Belotti. the updated suest.ado document for between-group coefficient tests.

                    However I would like to continue to talk to you about ways to utilize interaction items. The following new setup is what I need to do for my thesis, but when I was doing the regression I realized that the coefficients of my interaction term were omitted.

                    Now I have three variables: the dependent variable Y(dummy variable), the independent variable X(dummy variable), and the moderating variable Z (dummy variable). Where Z is a dummy variable labeled as a high-low group in the sample X=1 based on whether a continuous variable V is higher than the median of V. It is only possible for Z to equal 1 when X=1, where A high proportion of V is defined as Z=1 (labeled group A), a low proportion of V is defined as Z=0 (labeled group B), and a sample size of X=0 also defines Z as 0 (labeled group C).

                    My grouping standard is to group according to Z and X, the first group is group A and group C; The second group is group B and group C. I started by comparing the coefficient size of the AC group independent variable X with that of the BC group independent variable X (now tested with suest). However, after I tried your suggestion to introduce the interaction term coefficient for regression, I found that the regression coefficient of X*Z was omitted (My regression command is: reghdfe y c.X##c.Z, absorb(year firm) vce(cluster firm), which made me very confused.

                    Click image for larger version

Name:	2024-11-15 104042.png
Views:	1
Size:	8.2 KB
ID:	1767643



                    Looking forward to your reply.

                    Best wishes
                    Xiang Ron


                    Comment


                    • #11
                      The new suest can be downloaded here:
                      https://gitee.com/arlionn/suest_panel

                      Comment


                      • #12
                        As I implied with

                        You can duplicate part of the data
                        some data manipulation is required before estimating the model with interactions. Furthermore, you need to interact the fixed effects as well. I will see if I can create a reproducible example later on.

                        Comment


                        • #13
                          X/Z are collinear except for group B.

                          Comment


                          • #14
                            Code:
                            webuse grunfeld, clear
                            gen A= inrange(company, 1, 7)
                            gen B= inrange(company, 4, 10)
                            
                            
                            *USING REGRESS AND SUEST
                            regress invest mvalue kstock ib4.company i.year if A
                            est sto A
                            regress invest mvalue kstock ib4.company i.year if B
                            est sto B
                            suest A B
                            test _b[A_mean:mvalue]= _b[B_mean:mvalue]
                            
                            *MODEL WITH INTERACTIONS
                            expand 2 if A & B, gen(new)
                            drop A B
                            gen A= inrange(company, 1, 7) &!new
                            gen B=!A
                            gen obsno=_n
                            reghdfe invest c.A#(c.mvalue c.kstock) c.B#(c.mvalue c.kstock), a(i.company#c.A i.company#c.B i.year#c.A i.year#c.B) cluster(obsno)
                            test _b[c.A#c.mvalue]= _b[c.B#c.mvalue]
                            Res.:

                            Code:
                            . suest A B
                            
                            Simultaneous results for A, B                              Number of obs = 200
                            
                            ------------------------------------------------------------------------------
                                         |               Robust
                                         | Coefficient  std. err.      z    P>|z|     [95% conf. interval]
                            -------------+----------------------------------------------------------------
                            A_mean       |
                                  mvalue |   .1220006   .0180759     6.75   0.000     .0865726    .1574286
                                  kstock |   .3615751   .0547449     6.60   0.000     .2542771    .4688732
                                         |
                                 company |
                                      1  |  -112.8819   63.55125    -1.78   0.076    -237.4401    11.67625
                                      2  |   105.5867   33.75318     3.13   0.002     39.43164    171.7417
                                      3  |   -236.953   29.25474    -8.10   0.000    -294.2912   -179.6148
                                      5  |  -100.1514   24.77684    -4.04   0.000    -148.7131   -51.58966
                                      6  |   8.768066   8.194366     1.07   0.285    -7.292596    24.82873
                                      7  |  -42.26754   16.19031    -2.61   0.009    -73.99996   -10.53511
                                         |
                                    year |
                                   1936  |  -24.53739   25.51518    -0.96   0.336    -74.54621    25.47144
                                   1937  |  -54.25578   33.44403    -1.62   0.105    -119.8049    11.29332
                                   1938  |  -49.67567   29.06608    -1.71   0.087    -106.6441    7.292786
                                   1939  |  -92.56549   36.64014    -2.53   0.012    -164.3788   -20.75213
                                   1940  |  -56.19589   25.70215    -2.19   0.029    -106.5712   -5.820595
                                   1941  |  -24.36808   24.91802    -0.98   0.328     -73.2065    24.47035
                                   1942  |  -24.64611   26.43801    -0.93   0.351    -76.46366    27.17145
                                   1943  |  -50.17774   26.51863    -1.89   0.058    -102.1533    1.797819
                                   1944  |   -53.1491    30.8346    -1.72   0.085    -113.5838    7.285605
                                   1945  |  -66.60069   28.90015    -2.30   0.021    -123.2439   -9.957428
                                   1946  |  -36.14283   29.71565    -1.22   0.224    -94.38443    22.09878
                                   1947  |  -47.96899   29.03413    -1.65   0.099    -104.8749    8.936865
                                   1948  |  -47.63102   34.78369    -1.37   0.171    -115.8058    20.54376
                                   1949  |  -87.04609   33.02942    -2.64   0.008    -151.7826   -22.30962
                                   1950  |  -91.49044   33.97252    -2.69   0.007    -158.0754   -24.90551
                                   1951  |  -75.69916   42.68577    -1.77   0.076    -159.3617    7.963414
                                   1952  |  -76.70162   48.45574    -1.58   0.113    -171.6731    18.26988
                                   1953  |  -76.57738   50.74942    -1.51   0.131    -176.0444    22.88966
                                   1954  |  -105.0774   38.05845    -2.76   0.006    -179.6706   -30.48424
                                         |
                                   _cons |   14.73764   22.94488     0.64   0.521     -30.2335    59.70878
                            -------------+----------------------------------------------------------------
                            A_lnvar      |
                                   _cons |   8.249905   .1334912    61.80   0.000     7.988267    8.511543
                            -------------+----------------------------------------------------------------
                            B_mean       |
                                  mvalue |   .0681591   .0146953     4.64   0.000     .0393569    .0969614
                                  kstock |   .0613181   .0250914     2.44   0.015     .0121398    .1104964
                                         |
                                 company |
                                      5  |  -15.26219   15.26227    -1.00   0.317     -45.1757    14.65131
                                      6  |  -11.04158   7.476444    -1.48   0.140    -25.69514    3.611978
                                      7  |  -13.36628   12.53193    -1.07   0.286    -37.92841    11.19586
                                      8  |  -39.52882   5.614395    -7.04   0.000    -50.53283   -28.52481
                                      9  |  -30.55935   10.49431    -2.91   0.004    -51.12781   -9.990884
                                     10  |  -33.55412   10.42856    -3.22   0.001    -53.99372   -13.11452
                                         |
                                    year |
                                   1936  |  -.6742191   4.874083    -0.14   0.890    -10.22725    8.878808
                                   1937  |   1.241771   7.389821     0.17   0.867    -13.24201    15.72555
                                   1938  |   .0271155   4.413525     0.01   0.995    -8.623235    8.677466
                                   1939  |  -7.241651   4.826683    -1.50   0.134    -16.70177    2.218473
                                   1940  |  -3.075184   4.288366    -0.72   0.473    -11.48023    5.329858
                                   1941  |   7.675197   5.099086     1.51   0.132    -2.318829    17.66922
                                   1942  |   1.307218   5.306966     0.25   0.805    -9.094245    11.70868
                                   1943  |   -1.01689   6.408633    -0.16   0.874    -13.57758     11.5438
                                   1944  |   4.878557   7.658816     0.64   0.524    -10.13245    19.88956
                                   1945  |    2.86283   5.253673     0.54   0.586     -7.43418    13.15984
                                   1946  |   3.214002   6.424942     0.50   0.617    -9.378653    15.80666
                                   1947  |   6.025572   6.667182     0.90   0.366    -7.041864    19.09301
                                   1948  |   8.060272   5.742374     1.40   0.160    -3.194575    19.31512
                                   1949  |   2.840691   6.261125     0.45   0.650    -9.430889    15.11227
                                   1950  |   1.734127   7.173763     0.24   0.809    -12.32619    15.79444
                                   1951  |   19.82854   10.13134     1.96   0.050    -.0285263     39.6856
                                   1952  |   19.88965   9.098768     2.19   0.029      2.05639     37.7229
                                   1953  |   22.96341   9.951782     2.31   0.021     3.458276    42.46854
                                   1954  |   19.11981   12.32276     1.55   0.121    -5.032355    43.27197
                                         |
                                   _cons |   25.95734   10.80931     2.40   0.016     4.771477    47.14321
                            -------------+----------------------------------------------------------------
                            B_lnvar      |
                                   _cons |   5.330049   .1525765    34.93   0.000     5.031004    5.629093
                            ------------------------------------------------------------------------------
                            
                            . 
                            . test _b[A_mean:mvalue]= _b[B_mean:mvalue]
                            
                             ( 1)  [A_mean]mvalue - [B_mean]mvalue = 0
                            
                                       chi2(  1) =    5.64
                                     Prob > chi2 =    0.0175
                            
                            . 
                            . 
                            . 
                            . *MODEL WITH INTERACTIONS
                            
                            . 
                            . expand 2 if A & B, gen(new)
                            (80 observations created)
                            
                            . 
                            . drop A B
                            
                            . 
                            . gen A= inrange(company, 1, 7) &!new
                            
                            . 
                            . gen B=!A
                            
                            . 
                            . gen obsno=_n
                            
                            . 
                            . reghdfe invest c.A#(c.mvalue c.kstock) c.B#(c.mvalue c.kstock), a(i.company#c.A i.company#c.B i.year#c.A i.year#c.B) cluster(obsno)
                            (MWFE estimator converged in 2 iterations)
                            
                            HDFE Linear regression                            Number of obs   =        280
                            Absorbing 4 HDFE groups                           F(   4,    222) =      24.16
                            Statistics robust to heteroskedasticity           Prob > F        =     0.0000
                                                                              R-squared       =     0.9678
                                                                              Adj R-squared   =     0.9594
                                                                              Within R-sq.    =     0.6897
                            Number of clusters (obsno)   =        280         Root MSE        =    45.1112
                            
                                                            (Std. err. adjusted for 280 clusters in obsno)
                            ------------------------------------------------------------------------------
                                         |               Robust
                                  invest | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
                            -------------+----------------------------------------------------------------
                            c.A#c.mvalue |   .1220006   .0202494     6.02   0.000     .0820949    .1619063
                                         |
                            c.A#c.kstock |   .3615751   .0613279     5.90   0.000     .2407158    .4824344
                                         |
                            c.B#c.mvalue |   .0681591   .0164624     4.14   0.000     .0357166    .1006016
                                         |
                            c.B#c.kstock |   .0613181   .0281086     2.18   0.030     .0059243     .116712
                            ------------------------------------------------------------------------------
                            
                            Absorbed degrees of freedom:
                            -----------------------------------------------------+
                             Absorbed FE | Categories  - Redundant  = Num. Coefs |
                            -------------+---------------------------------------|
                             company#c.A |        10           3           7    ?|
                             company#c.B |        10           3           7    ?|
                                year#c.A |        20           0          20    ?|
                                year#c.B |        20           0          20    ?|
                            -----------------------------------------------------+
                            ? = number of redundant parameters may be higher
                            
                            . 
                            . test _b[c.A#c.mvalue]= _b[c.B#c.mvalue]
                            
                             ( 1)  c.A#c.mvalue - c.B#c.mvalue = 0
                            
                                   F(  1,   222) =    4.26
                                        Prob > F =    0.0403
                            
                            .

                            Comment


                            • #15
                              Originally posted by Andrew Musau View Post
                              Code:
                              webuse grunfeld, clear
                              gen A= inrange(company, 1, 7)
                              gen B= inrange(company, 4, 10)
                              
                              
                              *USING REGRESS AND SUEST
                              regress invest mvalue kstock ib4.company i.year if A
                              est sto A
                              regress invest mvalue kstock ib4.company i.year if B
                              est sto B
                              suest A B
                              test _b[A_mean:mvalue]= _b[B_mean:mvalue]
                              
                              *MODEL WITH INTERACTIONS
                              expand 2 if A & B, gen(new)
                              drop A B
                              gen A= inrange(company, 1, 7) &!new
                              gen B=!A
                              gen obsno=_n
                              reghdfe invest c.A#(c.mvalue c.kstock) c.B#(c.mvalue c.kstock), a(i.company#c.A i.company#c.B i.year#c.A i.year#c.B) cluster(obsno)
                              test _b[c.A#c.mvalue]= _b[c.B#c.mvalue]
                              Res.:

                              Code:
                              . suest A B
                              
                              Simultaneous results for A, B Number of obs = 200
                              
                              ------------------------------------------------------------------------------
                              | Robust
                              | Coefficient std. err. z P>|z| [95% conf. interval]
                              -------------+----------------------------------------------------------------
                              A_mean |
                              mvalue | .1220006 .0180759 6.75 0.000 .0865726 .1574286
                              kstock | .3615751 .0547449 6.60 0.000 .2542771 .4688732
                              |
                              company |
                              1 | -112.8819 63.55125 -1.78 0.076 -237.4401 11.67625
                              2 | 105.5867 33.75318 3.13 0.002 39.43164 171.7417
                              3 | -236.953 29.25474 -8.10 0.000 -294.2912 -179.6148
                              5 | -100.1514 24.77684 -4.04 0.000 -148.7131 -51.58966
                              6 | 8.768066 8.194366 1.07 0.285 -7.292596 24.82873
                              7 | -42.26754 16.19031 -2.61 0.009 -73.99996 -10.53511
                              |
                              year |
                              1936 | -24.53739 25.51518 -0.96 0.336 -74.54621 25.47144
                              1937 | -54.25578 33.44403 -1.62 0.105 -119.8049 11.29332
                              1938 | -49.67567 29.06608 -1.71 0.087 -106.6441 7.292786
                              1939 | -92.56549 36.64014 -2.53 0.012 -164.3788 -20.75213
                              1940 | -56.19589 25.70215 -2.19 0.029 -106.5712 -5.820595
                              1941 | -24.36808 24.91802 -0.98 0.328 -73.2065 24.47035
                              1942 | -24.64611 26.43801 -0.93 0.351 -76.46366 27.17145
                              1943 | -50.17774 26.51863 -1.89 0.058 -102.1533 1.797819
                              1944 | -53.1491 30.8346 -1.72 0.085 -113.5838 7.285605
                              1945 | -66.60069 28.90015 -2.30 0.021 -123.2439 -9.957428
                              1946 | -36.14283 29.71565 -1.22 0.224 -94.38443 22.09878
                              1947 | -47.96899 29.03413 -1.65 0.099 -104.8749 8.936865
                              1948 | -47.63102 34.78369 -1.37 0.171 -115.8058 20.54376
                              1949 | -87.04609 33.02942 -2.64 0.008 -151.7826 -22.30962
                              1950 | -91.49044 33.97252 -2.69 0.007 -158.0754 -24.90551
                              1951 | -75.69916 42.68577 -1.77 0.076 -159.3617 7.963414
                              1952 | -76.70162 48.45574 -1.58 0.113 -171.6731 18.26988
                              1953 | -76.57738 50.74942 -1.51 0.131 -176.0444 22.88966
                              1954 | -105.0774 38.05845 -2.76 0.006 -179.6706 -30.48424
                              |
                              _cons | 14.73764 22.94488 0.64 0.521 -30.2335 59.70878
                              -------------+----------------------------------------------------------------
                              A_lnvar |
                              _cons | 8.249905 .1334912 61.80 0.000 7.988267 8.511543
                              -------------+----------------------------------------------------------------
                              B_mean |
                              mvalue | .0681591 .0146953 4.64 0.000 .0393569 .0969614
                              kstock | .0613181 .0250914 2.44 0.015 .0121398 .1104964
                              |
                              company |
                              5 | -15.26219 15.26227 -1.00 0.317 -45.1757 14.65131
                              6 | -11.04158 7.476444 -1.48 0.140 -25.69514 3.611978
                              7 | -13.36628 12.53193 -1.07 0.286 -37.92841 11.19586
                              8 | -39.52882 5.614395 -7.04 0.000 -50.53283 -28.52481
                              9 | -30.55935 10.49431 -2.91 0.004 -51.12781 -9.990884
                              10 | -33.55412 10.42856 -3.22 0.001 -53.99372 -13.11452
                              |
                              year |
                              1936 | -.6742191 4.874083 -0.14 0.890 -10.22725 8.878808
                              1937 | 1.241771 7.389821 0.17 0.867 -13.24201 15.72555
                              1938 | .0271155 4.413525 0.01 0.995 -8.623235 8.677466
                              1939 | -7.241651 4.826683 -1.50 0.134 -16.70177 2.218473
                              1940 | -3.075184 4.288366 -0.72 0.473 -11.48023 5.329858
                              1941 | 7.675197 5.099086 1.51 0.132 -2.318829 17.66922
                              1942 | 1.307218 5.306966 0.25 0.805 -9.094245 11.70868
                              1943 | -1.01689 6.408633 -0.16 0.874 -13.57758 11.5438
                              1944 | 4.878557 7.658816 0.64 0.524 -10.13245 19.88956
                              1945 | 2.86283 5.253673 0.54 0.586 -7.43418 13.15984
                              1946 | 3.214002 6.424942 0.50 0.617 -9.378653 15.80666
                              1947 | 6.025572 6.667182 0.90 0.366 -7.041864 19.09301
                              1948 | 8.060272 5.742374 1.40 0.160 -3.194575 19.31512
                              1949 | 2.840691 6.261125 0.45 0.650 -9.430889 15.11227
                              1950 | 1.734127 7.173763 0.24 0.809 -12.32619 15.79444
                              1951 | 19.82854 10.13134 1.96 0.050 -.0285263 39.6856
                              1952 | 19.88965 9.098768 2.19 0.029 2.05639 37.7229
                              1953 | 22.96341 9.951782 2.31 0.021 3.458276 42.46854
                              1954 | 19.11981 12.32276 1.55 0.121 -5.032355 43.27197
                              |
                              _cons | 25.95734 10.80931 2.40 0.016 4.771477 47.14321
                              -------------+----------------------------------------------------------------
                              B_lnvar |
                              _cons | 5.330049 .1525765 34.93 0.000 5.031004 5.629093
                              ------------------------------------------------------------------------------
                              
                              .
                              . test _b[A_mean:mvalue]= _b[B_mean:mvalue]
                              
                              ( 1) [A_mean]mvalue - [B_mean]mvalue = 0
                              
                              chi2( 1) = 5.64
                              Prob > chi2 = 0.0175
                              
                              .
                              .
                              .
                              . *MODEL WITH INTERACTIONS
                              
                              .
                              . expand 2 if A & B, gen(new)
                              (80 observations created)
                              
                              .
                              . drop A B
                              
                              .
                              . gen A= inrange(company, 1, 7) &!new
                              
                              .
                              . gen B=!A
                              
                              .
                              . gen obsno=_n
                              
                              .
                              . reghdfe invest c.A#(c.mvalue c.kstock) c.B#(c.mvalue c.kstock), a(i.company#c.A i.company#c.B i.year#c.A i.year#c.B) cluster(obsno)
                              (MWFE estimator converged in 2 iterations)
                              
                              HDFE Linear regression Number of obs = 280
                              Absorbing 4 HDFE groups F( 4, 222) = 24.16
                              Statistics robust to heteroskedasticity Prob > F = 0.0000
                              R-squared = 0.9678
                              Adj R-squared = 0.9594
                              Within R-sq. = 0.6897
                              Number of clusters (obsno) = 280 Root MSE = 45.1112
                              
                              (Std. err. adjusted for 280 clusters in obsno)
                              ------------------------------------------------------------------------------
                              | Robust
                              invest | Coefficient std. err. t P>|t| [95% conf. interval]
                              -------------+----------------------------------------------------------------
                              c.A#c.mvalue | .1220006 .0202494 6.02 0.000 .0820949 .1619063
                              |
                              c.A#c.kstock | .3615751 .0613279 5.90 0.000 .2407158 .4824344
                              |
                              c.B#c.mvalue | .0681591 .0164624 4.14 0.000 .0357166 .1006016
                              |
                              c.B#c.kstock | .0613181 .0281086 2.18 0.030 .0059243 .116712
                              ------------------------------------------------------------------------------
                              
                              Absorbed degrees of freedom:
                              -----------------------------------------------------+
                              Absorbed FE | Categories - Redundant = Num. Coefs |
                              -------------+---------------------------------------|
                              company#c.A | 10 3 7 ?|
                              company#c.B | 10 3 7 ?|
                              year#c.A | 20 0 20 ?|
                              year#c.B | 20 0 20 ?|
                              -----------------------------------------------------+
                              ? = number of redundant parameters may be higher
                              
                              .
                              . test _b[c.A#c.mvalue]= _b[c.B#c.mvalue]
                              
                              ( 1) c.A#c.mvalue - c.B#c.mvalue = 0
                              
                              F( 1, 222) = 4.26
                              Prob > F = 0.0403
                              
                              .
                              Thank you so much.

                              Comment

                              Working...
                              X