Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • inter rater reliability

    Hi to everybody.
    I have to calculate inter rater reliability.

    Code:
    * Example generated by -dataex-. For more info, type help dataex
    clear
    input byte(Codice_soggetto Giudici A B C D E F)
     1 1 . . .  .  .  .
     1 2 2 2 4 17 17 40
     2 1 3 1 1 15 16 33
     2 2 2 2 2 16 16 36
     3 1 2 2 3 14 16 35
     3 2 2 2 4 17 18 41
     4 1 2 2 2 13 18 35
     4 2 1 2 4 18 18 42
     5 1 2 2 3 15 17 37
     5 2 2 2 4 17 18 41
     6 1 2 2 2 17 18 39
     6 2 1 2 4 18 18 42
     7 1 3 1 1 15 15 32
     7 2 3 1 2 12 12 27
     8 1 . . .  .  .  .
     8 2 2 2 4 17 16 39
     9 1 2 2 3 16 18 39
     9 2 2 2 4 17 18 41
    10 1 2 2 3 15 16 36
    10 2 2 2 4 18 18 42
    11 1 2 2 2 14 18 36
    11 2 3 1 4 15 17 37
    12 1 2 2 1 14 16 33
    12 2 3 1 2  9 10 22
    13 1 1 2 3 18 18 41
    13 2 2 2 4 18 18 42
    14 1 3 1 1 16 16 34
    14 2 3 1 3 17 18 39
    15 1 2 2 2 18 18 40
    15 2 1 2 4 18 18 42
    16 1 2 2 2 16 17 37
    16 2 2 2 4 17 18 41
    17 1 2 2 1 17 18 38
    17 2 3 1 3 18 18 40
    18 1 . . .  .  .  .
    18 2 2 2 3 14 13 32
    19 1 1 2 4 16 16 38
    19 2 1 2 4 17 18 41
     . . . . .  .  .  .
    end
    Out of 19 children (COLUMN A, codice_soggetto) two "judges" (COLUMN B) gave different scores on the variables A, B, C D, E and F (columns C, D, E, F, G and H respectively). How to calculate the inter rater reliability
    For three subject (Codice_soggetto 1, Codice_soggetto 8 e codice_soggetto 18) one judge did not express any evaluation

    Thanks in advance to everybody

  • #2
    Originally posted by Tommaso Salvitti View Post
    I have to calculate inter rater reliability. . . . two "judges" . . . gave different scores on the variables A, B, C D, E and F . . . How to calculate the inter rater reliability
    First combine the individual scores for each judge and child into a summary variable. Then use mixed followed by estat icc in order to compute the mixed-model (judges fixed and children random) intraclass correlation coefficient for that summary rating score.

    If the dataset were balanced, then you could've used icc . . . , mixed as well.

    Comment


    • #3

      Good morning Joseph Coveney and to everybody. I'll try this code. i don't know if it's correct.
      I changed the names of the variables A, B,C , D, E, F in item1 and so on
      HTML Code:
      rename *, lower  rename Codice_soggetto sid quietly reshape long item, i(sid) j(tmp) string  rename item sco  gen byte rid=substr(tmp, -1, 1)=="b" gen byte itm=real(substr(tmp,1, strlen(tmp)-1))  mixed sco i.rid ib6.itm || sid:, nolog  estat icc
      Is it correct according to you?

      Comment


      • #4

        sorry for the way I wrote the syntax
        Good morning Joseph Coveney and to everybody. I'll try this code. i don't know if it's correct.
        I changed the names of the variables A, B,C , D, E, F in item1 and so on



        HTML Code:
        rename *, lower
        
        rename soggetti sid
        quietly reshape long item, i(sid) j(tmp) string
        
        rename item sco
         gen byte rid=substr(tmp, -1, 1)=="b"
        gen byte itm=real(substr(tmp,1, strlen(tmp)-1))
        
        mixed sco i.rid ib6.itm || sid:, nolog
        
        estat icc

        Is it correct according to you?

        Comment


        • #5

          If I did it correctly, I get this output
          HTML Code:
          mixed sco i.rid ib6.itm || sid:, nolog  Mixed-effects ML regression                         Number of obs    =     210 Group variable: sid                                 Number of groups =      19                                                     Obs per group:                                                                  min =       6                                                                  avg =    11.1                                                                  max =      12                                                     Wald chi2(6)     = 9583.63 Log likelihood = -445.17174                         Prob > chi2      =  0.0000  ------------------------------------------------------------------------------          sco | Coefficient  Std. err.      z    P>|z|     [95% conf. interval] -------------+----------------------------------------------------------------        1.rid |   .6289804    .268051     2.35   0.019       .10361    1.154351              |          itm |           1  |      -35.4   .4499856   -78.67   0.000    -36.28196   -34.51804           2  |  -35.68571   .4499856   -79.30   0.000    -36.56767   -34.80376           3  |  -34.57143   .4499856   -76.83   0.000    -35.45338   -33.68947           4  |  -21.42857   .4499856   -47.62   0.000    -22.31053   -20.54662           5  |  -20.65714   .4499856   -45.91   0.000     -21.5391   -19.77519              |        _cons |   37.09132   .4311816    86.02   0.000     36.24622    37.93642 ------------------------------------------------------------------------------  ------------------------------------------------------------------------------   Random-effects parameters  |   Estimate   Std. err.     [95% conf. interval] -----------------------------+------------------------------------------------ sid: Identity                |                   var(_cons) |   1.154822   .4828033      .5089185    2.620487 -----------------------------+------------------------------------------------                var(Residual) |   3.543524    .362476      2.899772     4.33019 ------------------------------------------------------------------------------ LR test vs. linear model: chibar2(01) = 30.72         Prob >= chibar2 = 0.0000  .  . estat icc  Residual intraclass correlation  ------------------------------------------------------------------------------                        Level |        ICC   Std. err.     [95% conf. interval] -----------------------------+------------------------------------------------                          sid |   .2457933   .0810449      .1215277    .4343049 ------------------------------------------------------------------------------
          so My icc is 0.24 or this value is the residual intraclass correlation?
          Sorry if the question is stupid but I've recently approached this analysis thanks to everybody in advance

          Comment


          • #6
            If I did it correctly, I get this output

            Code:
            mixed sco i.rid ib6.itm || sid:, nolog
            
            Mixed-effects ML regression                         Number of obs    =     210
            Group variable: sid                                 Number of groups =      19
                                                                Obs per group:
                                                                             min =       6
                                                                             avg =    11.1
                                                                             max =      12
                                                                Wald chi2(6)     = 9583.63
            Log likelihood = -445.17174                         Prob > chi2      =  0.0000
            
            ------------------------------------------------------------------------------
                     sco | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
            -------------+----------------------------------------------------------------
                   1.rid |   .6289804    .268051     2.35   0.019       .10361    1.154351
                         |
                     itm |
                      1  |      -35.4   .4499856   -78.67   0.000    -36.28196   -34.51804
                      2  |  -35.68571   .4499856   -79.30   0.000    -36.56767   -34.80376
                      3  |  -34.57143   .4499856   -76.83   0.000    -35.45338   -33.68947
                      4  |  -21.42857   .4499856   -47.62   0.000    -22.31053   -20.54662
                      5  |  -20.65714   .4499856   -45.91   0.000     -21.5391   -19.77519
                         |
                   _cons |   37.09132   .4311816    86.02   0.000     36.24622    37.93642
            ------------------------------------------------------------------------------
            
            ------------------------------------------------------------------------------
              Random-effects parameters  |   Estimate   Std. err.     [95% conf. interval]
            -----------------------------+------------------------------------------------
            sid: Identity                |
                              var(_cons) |   1.154822   .4828033      .5089185    2.620487
            -----------------------------+------------------------------------------------
                           var(Residual) |   3.543524    .362476      2.899772     4.33019
            ------------------------------------------------------------------------------
            LR test vs. linear model: chibar2(01) = 30.72         Prob >= chibar2 = 0.0000
            
            . 
            . estat icc
            
            Residual intraclass correlation
            
            ------------------------------------------------------------------------------
                                   Level |        ICC   Std. err.     [95% conf. interval]
            -----------------------------+------------------------------------------------
                                     sid |   .2457933   .0810449      .1215277    .4343049
            ------------------------------------------------------------------------------

            Comment


            • #7
              so My icc is 0.24 or this value is the residual intraclass correlation?
              Sorry if the question is stupid but I've recently approached this analysis thanks to everybody in advance

              Comment


              • #8
                Joseph Coveney
                Did I understand your suggestions correctly? thnaks a lot

                Comment


                • #9
                  Originally posted by Tommaso Salvitti View Post
                  Did I understand your suggestions correctly?
                  No.

                  I don't know what these scores represent, but by inspection, their distributions are disparate, for example, B takes on only two values; A only three values and C only four. Only with the last three scores (D-F) could you make some kind of case that they're continuous, and even then their sample variances range from 3½ to over 20.

                  Moreover, I don't know whether this is just happenstance peculiar to this sample or built into the rating system, but scores A and B are collinear; likewise, score F and some subset of the other scores are collinear.

                  If you "have to calculate inter rater reliability", then my suggestion is to go back to whoever gave you this task for guidance on how to combine these scores into a single summary score that will be less discrete. I wouldn't worry too much about whether the summary score would satisfy psychometric unidimensionality criteria (you have only four linearly independent scores, anyway). For the task at hand, I would consider more important that it be amenable to fitting by a linear mixed model.

                  Comment


                  • #10
                    Sorry Joseph Coveney
                    Code:
                    * Example generated by -dataex-. To install: ssc install dataex
                    clear
                    input byte(Soggetti ITEM1A ITEM1B ITEM2A ITEM2B ITEM3A ITEM3B ITEM4A ITEM4B ITEM5A ITEM5B)
                     1 . 2 . 4  . 17  . 17  . 40
                     2 1 2 1 2 15 16 16 16 33 36
                     3 2 2 3 4 14 17 16 18 36 41
                     4 2 2 2 4 13 18 18 18 35 42
                     5 2 2 3 4 15 17 17 18 37 41
                     6 2 2 2 4 17 18 18 18 39 42
                     7 1 1 1 2 15 12 15 12 32 27
                     8 . 2 . 4  . 17  . 16  . 39
                     9 2 2 3 4 16 17 18 18 39 41
                    10 2 2 3 4 15 18 16 18 36 42
                    11 2 1 2 4 14 15 18 17 36 37
                    12 2 1 1 2 14  9 16 10 33 22
                    13 2 2 3 4 18 18 18 18 41 42
                    14 1 1 1 3 18 17 16 18 34 39
                    15 2 2 2 4 18 18 18 18 40 42
                    16 2 2 2 4 16 17 17 18 37 41
                    17 2 1 1 3 17 18 18 18 38 40
                    18 . 2 . 3  . 14  . 13  . 32
                    19 2 2 4 4 16 17 16 18 38 41
                    end

                    this is the correct database.
                    I'll try to explain the variables. the variable item5 is the sum of the variables item1, item2, item3 and item4. The item1 scores represent hand movements and can take values ​​of 1 and 2; item2 scores represent head movements and can take values ​​of 1,2,3 and 4; item 3 scores represent upper limb movements and can take values ​​from 0 to 18; item 4 scores represent the movements of the lower limbs and can take values ​​from 0 to 18. Item 5 scores generally represent how the child moves and can have a maximum value of 42.
                    From these premises how is the inter rater reliability?

                    Comment


                    • #11
                      Is anybody can help me?

                      Comment


                      • #12
                        I am just learning about ICR as well.

                        1. There are a number of ways to calculate the inter coder reliability
                        2. Hruschka et al. argue for the use of "Cohen's Kappa." Perhaps you can search for how to calculate that value.
                        3. The kappa range runs from -1 to 1. Therefore the authors propose these criteria,

                        0.811.00 = almost perfect;
                        0.61–0.80 = substantial;
                        0.41–0.60 = moderate;
                        0.210.40 = fair; 0.00–0.20 = slight;
                        and < 0.00 = poor.
                        These values might help interpret your Stata output.

                        This paper has been a tremendous help to me: Hruschka, Daniel J., et al. "Reliability in coding open-ended data: Lessons learned from HIV behavioral research." Field methods 16.3 (2004): 307-331.
                        Direct link to paper: https://journals.sagepub.com/doi/pdf...fDM8BktyeRLtay

                        Good luck!

                        Comment


                        • #13
                          thanks a lot.
                          But i refer #10 Joseph Coveney
                          Is the problem clearer now? thanks a lot

                          Comment


                          • #14

                            Dear everyone, I ask for advice and an opinion on how I am proceeding since I cannot consult anyone. Yesterday Joseph Coveney suggested me to combine these scores into a single summary score. So i consider only the variable item5 (the variable item5 is the sum of the variables item1, item2, item3 and item4; see#10) and i've done in this way:
                            Code:
                             * Example generated by -dataex-. For more info, type help dataex clear input byte(Soggetti item1a item1b)  1  . 40  2 33 36  3 36 41  4 35 42  5 37 41  6 39 42  7 32 27  8  . 39  9 39 41 10 36 42 11 36 37 12 33 22 13 41 42 14 34 39 15 40 42 16 37 41 17 38 40 18  . 32 19 38 41 end
                            rename *, lower rename Soggetti sid quietly reshape long item, i(sid) j(tmp) string rename item sco gen byte rid=substr(tmp, -1, 1)=="b" gen byte itm=real(substr(tmp,1, strlen(tmp)-1)) mixed sco i.rid ib1.itm || sid:, nolog estat icc
                            HTML Code:
                            rename *, lower  rename Soggetti sid quietly reshape long item, i(sid) j(tmp) string  rename item sco  gen byte rid=substr(tmp, -1, 1)=="b" gen byte itm=real(substr(tmp,1, strlen(tmp)-1))  mixed sco i.rid ib1.itm || sid:, nolog  estat icc
                            am I doing well? Thanks to everybody in advance

                            Comment


                            • #15
                              Dear everyone, I ask for advice and an opinion on how I am proceeding since I cannot consult anyone. Yesterday Joseph Coveney suggested me to combine these scores into a single summary score. So i consider only the variable item5 (the variable item5 is the sum of the variables item1, item2, item3 and item4; see#10) and i've done in this way:

                              Code:
                              * Example generated by -dataex-. For more info, type help dataex
                              clear
                              input byte(Soggetti ITEM5A ITEM5B)
                               1  . 40
                               2 33 36
                               3 36 41
                               4 35 42
                               5 37 41
                               6 39 42
                               7 32 27
                               8  . 39
                               9 39 41
                              10 36 42
                              11 36 37
                              12 33 22
                              13 41 42
                              14 34 39
                              15 40 42
                              16 37 41
                              17 38 40
                              18  . 32
                              19 38 41
                              end


                              Code:
                              rename *, lower
                              
                              rename Soggetti sid
                              quietly reshape long item, i(sid) j(tmp) string
                              
                              rename item sco
                               gen byte rid=substr(tmp, -1, 1)=="b"
                              gen byte itm=real(substr(tmp,1, strlen(tmp)-1))
                              
                              mixed sco i.rid ib1.itm || sid:, nolog
                              
                              estat icc
                              am I doing well? Thanks to everybody in advance

                              Comment

                              Working...
                              X