In short, I am trying to take this functioning SEM model
and apply the following changes:
- Make the "CSykKmTransp_sqrt_cat4" treated as the ordinal variable it is, through applying ologit.
- Fix the error term of the summated attitude scores by (1-(Cronbach's alpha))*variance to account for the measurement error in this construct. The summated attitude scores are post_att_tot and pre_att_tot, and are the rowmean of 6 other variables.
To implement this, I am currently attempting to convert the model to gsem, adding ologit to the CSykKmTransp_sqrt_cat4 link, and adding the Cronbach's alpha through the reliability() option. The current code is this, but it is not working.
There are two main errors i get, that I am struggling with.
1 ) "invalid reliability() option; pre_att_tot must be an observed endogenous gaussian variable with an identity link"
and of this reliability option is removed,
2) "invalid covariance specification; pre_att_tot does not identify a gaussian error or latent variable"
Which I do not completely understand, because pre_att_tot not being endogenous was not a problem in the SEM original model. However, I realize that I am currently working with model specifications way above my current SEM knowledge and would greatly appreciate help.
Code:
qui: sem /// (post_att_tot <- pre_att_tot ASykKmTransp_sqrt_cat4) /// (CSykKmTransp_sqrt_cat4 <- ASykKmTransp_sqrt_cat4 pre_att_tot) /// , nocapslatent /// cov(pre_att_tot*ASykKmTransp_sqrt_cat4 e.post_att_tot*e.CSykKmTransp_sqrt_cat4) sem, standardized
- Make the "CSykKmTransp_sqrt_cat4" treated as the ordinal variable it is, through applying ologit.
- Fix the error term of the summated attitude scores by (1-(Cronbach's alpha))*variance to account for the measurement error in this construct. The summated attitude scores are post_att_tot and pre_att_tot, and are the rowmean of 6 other variables.
To implement this, I am currently attempting to convert the model to gsem, adding ologit to the CSykKmTransp_sqrt_cat4 link, and adding the Cronbach's alpha through the reliability() option. The current code is this, but it is not working.
Code:
gsem /// (post_att_tot <- pre_att_tot ASykKmTransp_sqrt_cat4) /// (CSykKmTransp_sqrt_cat4 <- ASykKmTransp_sqrt_cat4 pre_att_tot, ologit) /// , nocapslatent reliability(pre_att_tot 0.7469 post_att_tot 0.7492) /// cov(pre_att_tot*ASykKmTransp_sqrt_cat4 e.post_att_tot*e.CSykKmTransp_sqrt_cat4)
1 ) "invalid reliability() option; pre_att_tot must be an observed endogenous gaussian variable with an identity link"
and of this reliability option is removed,
2) "invalid covariance specification; pre_att_tot does not identify a gaussian error or latent variable"
Which I do not completely understand, because pre_att_tot not being endogenous was not a problem in the SEM original model. However, I realize that I am currently working with model specifications way above my current SEM knowledge and would greatly appreciate help.
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float(pre_att_tot post_att_tot ASykKmTransp_sqrt_cat4 CSykKmTransp_sqrt_cat4) 3.166667 3.833333 1 1 6.666667 6 3 3 6 5.666667 4 3 4.3333335 4.3333335 1 1 3.5 3.5 3 3 5.666667 6.333333 2 3 6 7 4 4 4.6666665 4.6666665 3 3 5.5 6 4 4 3.5 4.833333 2 2 3.166667 6 2 2 5 3.833333 4 4 4.6666665 5.166667 4 4 5.166667 4.3333335 1 1 6.5 6.5 4 4 4.833333 4.6666665 4 4 4 4.5 3 3 5.333333 5.666667 3 4 6.666667 6.666667 4 4 3.833333 3 1 2 2.5 2.1666667 1 1 6 6.666667 4 4 4.6666665 3.5 1 1 3.333333 2.3333333 1 1 5 5.333333 4 3 6 5.833333 4 4 6.166667 6.333333 4 4 5.333333 5.166667 4 4 6.166667 6.166667 4 4 6.666667 6.5 3 4 5.333333 4.833333 4 4 5.833333 5 3 4 7 6.333333 4 4 5.333333 5 3 3 5.5 6 2 2 5.833333 5.5 4 3 3.5 5.333333 3 2 6.333333 6.666667 3 3 3.166667 4.833333 4 1 5 4.5 3 1 4.5 4.3333335 4 4 5 3.333333 3 2 6.666667 6.333333 2 3 4.6666665 5 4 3 7 6 2 3 6.5 6.666667 4 4 4.833333 2.3333333 1 3 5 5.833333 4 4 5.666667 4.5 1 1 5.5 5 4 4 6.333333 6 1 3 4.1666665 4.3333335 3 3 4.6666665 5 1 1 7 7 4 4 4.833333 4.1666665 4 4 4.833333 4.833333 3 3 6 6.166667 1 1 5 7 4 4 4.6666665 5.5 4 3 5.833333 5 4 4 6 5 3 1 3.833333 5.333333 . 2 6.333333 5 4 3 4.5 4.6666665 3 3 6 5.833333 4 4 5 2.833333 3 4 4.5 3.833333 1 2 4.6666665 4.833333 1 3 5.833333 5.666667 2 2 6.833333 6.5 2 3 3.5 3.333333 1 3 5 6.333333 4 3 7 5 1 1 6.666667 5.833333 3 4 4.5 3.5 1 1 5 5.166667 2 2 4.1666665 4 3 2 5.5 5.833333 4 4 4 4.833333 1 1 5.5 5 1 2 5.833333 7 3 4 5 5.5 4 4 5 6.5 3 2 3.666667 4.3333335 4 4 5 5.166667 3 3 4.5 4.833333 3 3 5.166667 5 1 1 5.5 6.5 2 3 5.666667 6 3 4 7 7 4 4 5.333333 5.666667 1 2 6.5 7 4 4 2.833333 4 2 4 4.833333 4.833333 3 3 4.3333335 4.5 3 3 6 7 4 4 5.666667 5.5 3 4 5.333333 4.5 4 4 3.5 4.6666665 1 1 3.666667 4.5 2 2 end