Hi. I am using the Cumby-Huizinga method (actest) to test for autocorrelation in my data. Post this, I will be accounting for autocorrelation structure in my panel interrupted time series model (xtset).
Below are the results of the actest, where I have significant results at lag 7, 14, 21 and 28; but not at other points. I am unsure about how to account for this in the regression - would the lag be at 7/14/21/28 or not at all? Any help would be much appreciated.
Below are the results of the actest, where I have significant results at lag 7, 14, 21 and 28; but not at other points. I am unsure about how to account for this in the regression - would the lag be at 7/14/21/28 or not at all? Any help would be much appreciated.
Code:
actest resid, lags(30) robust Cumby-Huizinga test for autocorrelation H0: disturbance is MA process up to order q HA: serial correlation present at specified lags >q ----------------------------------------------------------------------------- H0: q=0 (serially uncorrelated) | H0: q=specified lag-1 HA: s.c. present at range specified | HA: s.c. present at lag specified -----------------------------------------+----------------------------------- lags | chi2 df p-val | lag | chi2 df p-val -----------+-----------------------------+-----+----------------------------- 1 - 1 | 0.265 1 0.6065 | 1 | 0.265 1 0.6065 1 - 2 | 0.651 2 0.7221 | 2 | 0.385 1 0.5351 1 - 3 | 1.548 3 0.6711 | 3 | 0.899 1 0.3431 1 - 4 | 2.087 4 0.7197 | 4 | 0.604 1 0.4371 1 - 5 | 2.369 5 0.7961 | 5 | 0.282 1 0.5957 1 - 6 | 2.768 6 0.8373 | 6 | 0.397 1 0.5286 1 - 7 | 18.624 7 0.0095 | 7 | 27.274 1 0.0000 1 - 8 | 18.662 8 0.0168 | 8 | 0.305 1 0.5808 1 - 9 | 18.669 9 0.0282 | 9 | 0.107 1 0.7433 1 - 10 | 19.061 10 0.0395 | 10 | 0.320 1 0.5716 1 - 11 | 19.868 11 0.0472 | 11 | 0.841 1 0.3592 1 - 12 | 26.093 12 0.0104 | 12 | 1.558 1 0.2120 1 - 13 | 26.383 13 0.0151 | 13 | 0.358 1 0.5494 1 - 14 | 28.868 14 0.0109 | 14 | 8.916 1 0.0028 1 - 15 | 28.965 15 0.0163 | 15 | 0.204 1 0.6514 1 - 16 | 29.830 16 0.0189 | 16 | 0.954 1 0.3286 1 - 17 | 30.854 17 0.0208 | 17 | 0.499 1 0.4801 1 - 18 | 33.490 18 0.0146 | 18 | 0.841 1 0.3590 1 - 19 | 33.503 19 0.0210 | 19 | 1.092 1 0.2959 1 - 20 | 33.774 20 0.0277 | 20 | 0.446 1 0.5043 1 - 21 | 40.950 21 0.0057 | 21 | 4.893 1 0.0270 1 - 22 | 52.016 22 0.0003 | 22 | 2.005 1 0.1568 1 - 23 | 52.445 23 0.0004 | 23 | 2.060 1 0.1513 1 - 24 | 52.484 24 0.0007 | 24 | 1.253 1 0.2629 1 - 25 | 52.487 25 0.0010 | 25 | 0.840 1 0.3595 1 - 26 | 52.500 26 0.0016 | 26 | 0.003 1 0.9586 1 - 27 | 53.325 27 0.0018 | 27 | 1.736 1 0.1876 1 - 28 | 60.059 28 0.0004 | 28 | 3.903 1 0.0482 1 - 29 | 60.947 29 0.0005 | 29 | 1.612 1 0.2042 1 - 30 | 61.000 30 0.0007 | 30 | 1.100 1 0.2943 -----------------------------------------------------------------------------
Comment