Hello everyone,
I am trying to understand -lnvar- in the output of -suest- with -reg-.
The following is an example from the manual:
From the help file:
Does it mean lnvar is the residual variance?
I understand lnvar is not important when comparing coefficients across models, but I am just wondering what lnvar means, and whether it is useful in some way.
Thanks.
I am trying to understand -lnvar- in the output of -suest- with -reg-.
The following is an example from the manual:
Code:
. use https://www.stata-press.com/data/r18/income . regress inc edu exp male Source | SS df MS Number of obs = 277 -------------+---------------------------------- F(3, 273) = 42.34 Model | 2058.44672 3 686.148908 Prob > F = 0.0000 Residual | 4424.05183 273 16.2053181 R-squared = 0.3175 -------------+---------------------------------- Adj R-squared = 0.3100 Total | 6482.49855 276 23.4873136 Root MSE = 4.0256 ------------------------------------------------------------------------------ inc | Coefficient Std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- edu | 2.213707 .243247 9.10 0.000 1.734828 2.692585 exp | 1.47293 .231044 6.38 0.000 1.018076 1.927785 male | .5381153 .4949466 1.09 0.278 -.436282 1.512513 _cons | 1.255497 .3115808 4.03 0.000 .642091 1.868904 ------------------------------------------------------------------------------ . est store Inc . probit promo edu exp male, nolog Probit regression Number of obs = 277 LR chi2(3) = 49.76 Prob > chi2 = 0.0000 Log likelihood = -158.43888 Pseudo R2 = 0.1357 ------------------------------------------------------------------------------ promo | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- edu | .4593002 .0898537 5.11 0.000 .2831901 .6354102 exp | .3593023 .0805774 4.46 0.000 .2013735 .5172312 male | .2079983 .1656413 1.26 0.209 -.1166527 .5326494 _cons | -.464622 .1088166 -4.27 0.000 -.6778985 -.2513454 ------------------------------------------------------------------------------ . est store Promo . suest Inc Promo, vce(cluster famid) Simultaneous results for Inc, Promo Number of obs = 277 (Std. err. adjusted for 135 clusters in famid) ------------------------------------------------------------------------------ | Robust | Coefficient std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- Inc_mean | edu | 2.213707 .2483907 8.91 0.000 1.72687 2.700543 exp | 1.47293 .1890583 7.79 0.000 1.102383 1.843478 male | .5381153 .4979227 1.08 0.280 -.4377952 1.514026 _cons | 1.255497 .3374977 3.72 0.000 .594014 1.916981 -------------+---------------------------------------------------------------- Inc_lnvar | _cons | 2.785339 .079597 34.99 0.000 2.629332 2.941347 -------------+---------------------------------------------------------------- Promo_promo | edu | .4593002 .0886982 5.18 0.000 .2854549 .6331454 exp | .3593023 .079772 4.50 0.000 .2029522 .5156525 male | .2079983 .1691053 1.23 0.219 -.1234419 .5394386 _cons | -.464622 .1042169 -4.46 0.000 -.6688833 -.2603607 ------------------------------------------------------------------------------
regress does not include its ancillary parameter, the residual variance, in its coefficient vector and (co)variance matrix. Moreover, while the score option is allowed with predict after regress, a score variable is generated for the mean but not for the variance parameter. suest contains special code that assigns the equation name mean to the coefficients for the mean, adds the equation lnvar for the log variance, and computes the appropriate score variables.
I understand lnvar is not important when comparing coefficients across models, but I am just wondering what lnvar means, and whether it is useful in some way.
Thanks.
Comment