Dear all,
I am having troubles understanding the reasons why I get different results for my interactions in a pooled and the two unpooled models.
This is an example of my stacked dataset with two obs for each x7.
The following is the model, output, and marginsplot of my pooled analysis:

Unfortunately, when I run the analyses for the two values of x6 I am interested in, the results do not add up. Both are not significant, and while the model for x6=0 is in the expected direction, the p-value is barely <0.10. How can these results be explained?


Sincerely
Mattia
I am having troubles understanding the reasons why I get different results for my interactions in a pooled and the two unpooled models.
This is an example of my stacked dataset with two obs for each x7.
Code:
input float(x1 x2) double(x3 x4) float x5 byte x6 str20 x7 float y 2.5 4 6.1 0 21 2 "AGALEV" 4.818182 1 4 6.1 0 21 1 "AGALEV" 6.416667 3 4 6.1 0 21 0 "AGALEV" 6.25 2.5 6.636364 8.89 1 21 2 "CDV" 4.7272725 3 6.636364 8.89 1 21 1 "CDV" 5.333333 5.2 6.636364 8.89 1 21 0 "CDV" 6.833333 2.5 3.909091 6.14 0 21 2 "ECOLO" 4.818182 1 3.909091 6.14 0 21 1 "ECOLO" 6.272727 3.4 3.909091 6.14 0 21 0 "ECOLO" 6.25 2 7 7.56 1 21 2 "PRL/MR" 5.090909 1.5 7 7.56 1 21 1 "PRL/MR" 4.4545455 2.4 7 7.56 1 21 0 "PRL/MR" 8.083333 2.75 7.5 9.46 0 21 2 "PSBE" 4.2727275 2.5 7.5 9.46 0 21 1 "PSBE" 4 2.2 7.5 9.46 0 21 0 "PSBE" 8.166667 2.3333333 6.7 3.7 0 21 2 "PSC/CDH" 4.3636365 3 6.7 3.7 0 21 1 "PSC/CDH" 5 4.4 6.7 3.7 0 21 0 "PSC/CDH" 6.416667 2.666667 8.125 8.62 0 10 2 "PVDA-PTB" 4 3 8.125 8.62 0 10 1 "PVDA-PTB" 3.4 .6 8.125 8.62 0 10 0 "PVDA-PTB" 8.833333 2.5 6.818182 6.71 0 21 2 "SP/SPA" 4.181818 2.5 6.818182 6.71 0 21 1 "SP/SPA" 4.5833335 2.2 6.818182 6.71 0 21 0 "SP/SPA" 7.916667 2.75 9.2 11.95 0 21 2 "VB" 4.7272725 2 9.2 11.95 0 21 1 "VB" 6.916667 3.6 9.2 11.95 0 21 0 "VB" 4 1.5 6.636364 8.54 1 21 2 "VLD/PVV" 5.090909 1.5 6.636364 8.54 1 21 1 "VLD/PVV" 5.166667 2.6 6.636364 8.54 1 21 0 "VLD/PVV" 8.166667 3.75 8.090909 16.03 0 21 2 "VU/NVA" 4.2727275 5 8.090909 16.03 0 21 1 "VU/NVA" 5.416667 2.8 8.090909 16.03 0 21 0 "VU/NVA" 7.5 2.5714285 4.076923 3 0 1 2 "A" 4.285714 .6666667 4.076923 3 0 1 1 "A" 7.857143 3 4.076923 3 0 1 0 "A" 3.4285715 1.4444444 9.357142 8.7 0 21 2 "DF" 6.785714 1.3333334 9.357142 8.7 0 21 1 "DF" 7.928571 6 9.357142 8.7 0 21 0 "DF" 4.142857 4 3.857143 6.9 0 21 2 "ELDK" 5.769231 1.6666666 3.857143 6.9 0 21 1 "ELDK" 7.142857 1 3.857143 6.9 0 21 0 "ELDK" 7.357143 3.333333 7.285714 6.6 0 21 2 "KF" 4.714286 2.3333333 7.285714 6.6 0 21 1 "KF" 5.642857 1.6666666 7.285714 6.6 0 21 0 "KF" 7.357143 3.875 8.571428 2.3 0 10 2 "LA" 3.642857 5.333333 8.571428 2.3 0 10 1 "LA" 4.428571 1 8.571428 2.3 0 10 0 "LA" 8.428572 2 9.214286 2.4 0 1 2 "NB" 4.714286 1 9.214286 2.4 0 1 1 "NB" 7.583333 2 9.214286 2.4 0 1 0 "NB" 5.714286 1.1111112 7.071429 8.6 0 21 2 "RV" 7.142857 1 7.071429 8.6 0 21 1 "RV" 7.928571 3.333333 7.071429 8.6 0 21 0 "RV" 6 3.111111 6.928571 25.9 1 21 2 "SDDK" 4.714286 3 6.928571 25.9 1 21 1 "SDDK" 5.5 2.3333333 6.928571 25.9 1 21 0 "SDDK" 7.357143 3.888889 4.857143 7.7 0 21 2 "SFDK" 4.571429 1.6666666 4.857143 7.7 0 21 1 "SFDK" 5.571429 1.6666666 4.857143 7.7 0 21 0 "SFDK" 6.142857 4.3333335 6.785714 23.4 0 21 2 "v" 5.214286 6 6.785714 23.4 0 21 1 "v" 5.5 2.666667 6.785714 23.4 0 21 0 "v" 6.714286 2.909091 7 12.6 0 6 2 "AfD" 6.714286 3.166667 7 12.6 0 6 1 "AfD" 9.428572 6.666667 7 12.6 0 6 0 "AfD" 3.190476 2.636364 8.315789 26.8 1 21 2 "CDUGE" 6.857143 5.666667 8.315789 26.8 1 21 1 "CDUGE" 6.238095 4.5833335 8.315789 26.8 1 21 0 "CDUGE" 6.476191 3.636364 8.315789 6.2 1 21 2 "CSU" 6.6 3.4 8.315789 6.2 1 21 1 "CSU" 7.619048 3.090909 8.315789 6.2 1 21 0 "CSU" 6.523809 . . . 0 6 2 "DieTier" 4 3 . . 0 6 1 "DieTier" 7 2 . . 0 6 0 "DieTier" 2.5 3.727273 8.263158 10.7 0 21 2 "FDP" 5.666667 3.083333 8.263158 10.7 0 21 1 "FDP" 5.047619 1.8333334 8.263158 10.7 0 21 0 "FDP" 8.1 1.4545455 4.842105 8.9 0 21 2 "GRUNEN" 7.333333 1.5 4.842105 8.9 0 21 1 "GRUNEN" 8.476191 3.75 4.842105 8.9 0 21 0 "GRUNEN" 5 5.090909 6.055555 9.2 0 21 2 "LINKE" 4.85 4.3333335 6.055555 9.2 0 21 1 "LINKE" 5.238095 1.9166666 6.055555 9.2 0 21 0 "LINKE" 8.095238 0 1.5 . 0 6 2 "Piraten" 5.25 1.6666666 1.5 . 0 6 1 "Piraten" 8.6 2.666667 1.5 . 0 6 0 "Piraten" 2.2 2.3636363 5.578948 20.5 1 21 2 "SPD" 6.857143 4.1666665 5.578948 20.5 1 21 1 "SPD" 5.476191 5.5 5.578948 20.5 1 21 0 "SPD" 7.666667 1.4 9.666667 3.7 0 1 2 "EL" 4.375 1 9.666667 3.7 0 1 1 "EL" 8.25 2.666667 9.666667 3.7 0 1 0 "EL" 4.375 1.5 6.666667 .74 0 1 2 "KIDISO" 7.142857 2 6.666667 .74 0 1 1 "KIDISO" 6.75 2 6.666667 .74 0 1 0 "KIDISO" 7.2 .16666667 9 5.3 0 21 2 "KKE" 6.222222 .5 9 5.3 0 21 1 "KKE" 3.25 0 9 5.3 0 21 0 "KKE" 9.111111 1 5.5 3.44 0 1 2 "MR25" 7.625 end
Code:
eststo seven: reg y c.x1##c.x2 x3 x4 x5 i.country if x6!=2 & in_model_1==1, vce(cl x7) margins, dydx(x1) at(x2=(0(0.5)10)) marginsplot, title("Average Marginal Effects of x1 on y (95% CIs)") xtitle("x2") /// addplot(histogram x2 if x6!=2, freq width(0.5) yaxis(2) yscale(alt axis(2)) fcolor(%25) lc(black%50))
Code:
Linear regression Number of obs = 258 F(20, 129) = 11.74 Prob > F = 0.0000 R-squared = 0.3411 Root MSE = 1.2825 (Std. err. adjusted for 130 clusters in x7) ------------------------------------------------------------------------------ | Robust y | Coefficient std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- x1 | .0019245 .2214274 0.01 0.993 -.436175 .4400241 x2 | .0689307 .0806277 0.85 0.394 -.0905932 .2284545 | c.x1#c.x2 | -.0763485 .0301067 -2.54 0.012 -.1359155 -.0167816 | x3 | .0439528 .0079439 5.53 0.000 .0282355 .05967 x4 | .0707958 .146916 0.48 0.631 -.2198811 .3614728 x5 | .0015976 .0101892 0.16 0.876 -.018562 .0217572 | country | 2. dk | .1339352 .2632911 0.51 0.612 -.3869927 .654863 3. ge | .8146273 .2339428 3.48 0.001 .3517659 1.277489 4. gr | .5158083 .3239174 1.59 0.114 -.1250702 1.156687 5. esp | .0285887 .2713843 0.11 0.916 -.5083519 .5655292 6. fr | .7092217 .2187707 3.24 0.002 .2763785 1.142065 7. irl | -.68028 .2382757 -2.86 0.005 -1.151714 -.2088458 8. it | .2901257 .4193663 0.69 0.490 -.5396007 1.119852 10. nl | -.420152 .1813169 -2.32 0.022 -.7788919 -.0614122 11. uk | -.787641 .2225044 -3.54 0.001 -1.227871 -.3474106 12. por | .7449562 .3259486 2.29 0.024 .1000589 1.389854 13. aus | -.8840575 .3138242 -2.82 0.006 -1.504966 -.2631485 14. fin | .6545474 .1682645 3.89 0.000 .3216321 .9874628 16. sv | .4814474 .216804 2.22 0.028 .0524953 .9103995 38. lux | -1.392723 .4609494 -3.02 0.003 -2.304723 -.4807235 | _cons | 6.653327 .6476639 10.27 0.000 5.371908 7.934746 ------------------------------------------------------------------------------
Unfortunately, when I run the analyses for the two values of x6 I am interested in, the results do not add up. Both are not significant, and while the model for x6=0 is in the expected direction, the p-value is barely <0.10. How can these results be explained?
Code:
eststo seven2: reg y c.x1##c.x2 x3 x4 x5 i.country if x6==0 & in_model_2==1 margins, dydx(x1) at(x2=(0(0.5)10)) marginsplot, title("Average Marginal Effects of x1 on y (95% CIs)") xtitle("x2") /// addplot(histogram x2 if x6==0 & in_model_2==1, freq width(0.5) yaxis(2) yscale(alt axis(2)) fcolor(%25) lc(black%50)) eststo seven3: reg y c.x1##c.x2 x3 x4 x5 i.country if x6==1 & in_model_3==1 margins, dydx(x1) at(x2=(0(0.5)10)) marginsplot, title("Average Marginal Effects of x1 on y (95% CIs)") xtitle("x2") /// addplot(histogram x2 if x6==1 & in_model_3==1, freq width(0.5) yaxis(2) yscale(alt axis(2)) fcolor(%25) lc(black%50))
Code:
eststo seven2: reg y c.x1##c.x2 x3 x4 x5 i.country if x6==0 & in_model_2==1 Source | SS df MS Number of obs = 128 -------------+---------------------------------- F(20, 107) = 4.76 Model | 150.651879 20 7.53259395 Prob > F = 0.0000 Residual | 169.297938 107 1.58222372 R-squared = 0.4709 -------------+---------------------------------- Adj R-squared = 0.3720 Total | 319.949817 127 2.5192899 Root MSE = 1.2579 ------------------------------------------------------------------------------ y | Coefficient Std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- x1 | .1074972 .3360307 0.32 0.750 -.5586445 .7736388 x2 | .0709244 .180704 0.39 0.695 -.2873001 .429149 | c.x1#c.x2 | -.08677 .0495838 -1.75 0.083 -.1850642 .0115242 | x3 | .0609723 .016123 3.78 0.000 .0290104 .0929342 x4 | .137091 .3109673 0.44 0.660 -.4793655 .7535475 x5 | .0312748 .0174638 1.79 0.076 -.0033452 .0658947 | country | 2. dk | -.8865927 .5647997 -1.57 0.119 -2.006242 .2330568 3. ge | -.4909954 .6170599 -0.80 0.428 -1.714245 .7322539 4. gr | .0128348 .6165485 0.02 0.983 -1.209401 1.23507 5. esp | -.3776846 .531973 -0.71 0.479 -1.432259 .6768899 6. fr | .3147261 .5968196 0.53 0.599 -.868399 1.497851 7. irl | -1.004265 .6580029 -1.53 0.130 -2.308679 .3001494 8. it | -.3107438 .6299975 -0.49 0.623 -1.55964 .9381529 10. nl | -1.235017 .5238642 -2.36 0.020 -2.273517 -.1965178 11. uk | -2.06065 .6022026 -3.42 0.001 -3.254446 -.8668532 12. por | .5106341 .6342881 0.81 0.423 -.7467681 1.768036 13. aus | -1.83555 .699734 -2.62 0.010 -3.222691 -.4484088 14. fin | -.5542002 .6047479 -0.92 0.362 -1.753042 .6446421 16. sv | -.7864335 .5936533 -1.32 0.188 -1.963282 .390415 38. lux | -1.986957 .6895806 -2.88 0.005 -3.35397 -.6199439 | _cons | 6.848582 1.376672 4.97 0.000 4.11949 9.577673 ------------------------------------------------------------------------------ eststo seven3: reg y c.x1##c.x2 x3 x4 x5 i.country if x6==1 & in_model_3==1 Source | SS df MS Number of obs = 130 -------------+---------------------------------- F(20, 109) = 5.44 Model | 132.957861 20 6.64789305 Prob > F = 0.0000 Residual | 133.32071 109 1.22312578 R-squared = 0.4993 -------------+---------------------------------- Adj R-squared = 0.4075 Total | 266.278571 129 2.06417497 Root MSE = 1.106 ------------------------------------------------------------------------------ y | Coefficient Std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- x1 | -.6511678 .3113023 -2.09 0.039 -1.268159 -.0341768 x2 | -.0603839 .112382 -0.54 0.592 -.2831215 .1623536 | c.x1#c.x2 | .0043718 .0439778 0.10 0.921 -.0827908 .0915343 | x3 | .0330859 .0147282 2.25 0.027 .0038952 .0622767 x4 | -.0551796 .2737978 -0.20 0.841 -.5978379 .4874787 x5 | -.0272743 .014766 -1.85 0.067 -.05654 .0019914 | country | 2. dk | 1.199387 .4903972 2.45 0.016 .2274362 2.171339 3. ge | 2.207378 .54445 4.05 0.000 1.128296 3.28646 4. gr | 1.114636 .5351736 2.08 0.040 .0539394 2.175333 5. esp | .4695195 .4680648 1.00 0.318 -.4581697 1.397209 6. fr | 1.346269 .5183206 2.60 0.011 .3189745 2.373564 7. irl | -.153926 .5391264 -0.29 0.776 -1.222457 .914605 8. it | 1.005785 .5587891 1.80 0.075 -.1017168 2.113287 10. nl | .46 .4622662 1.00 0.322 -.4561965 1.376197 11. uk | .6379496 .5302325 1.20 0.232 -.4129541 1.688853 12. por | 1.022597 .5574282 1.83 0.069 -.0822071 2.127402 13. aus | -.0046027 .6292805 -0.01 0.994 -1.251816 1.242611 14. fin | 2.056141 .5390641 3.81 0.000 .9877332 3.124548 16. sv | 1.785488 .5192244 3.44 0.001 .756402 2.814574 38. lux | -.5289811 .6191384 -0.85 0.395 -1.756093 .698131 | _cons | 7.331186 .8890873 8.25 0.000 5.569044 9.093328 ------------------------------------------------------------------------------
Sincerely
Mattia
Comment