I am running a cross-sectional regression of individuals nested in regions. I want to plot my cross-level continuous-by-continuous interaction in Stata, but margins returns non-estimable results similar to this post on Statalist. I have followed the code provided by Huber (2024) and Mize (2019). A peculiarity of my regression equation is that my variable success2017 is operationalized at the region level while wexp_dec is a individual-level variable. So everyone residing in region 81802 has the same value for success2017. Thus, when I delete my region variable from my regression equation, the margins are estimable. I would like to control for effects of regions, therefore I am trying to understand why margins are not estimable when I include i.regions as control variable. Given that 81829.region is even omitted I am wondering if it even makes sense to include it due to multicollinearity with my success2017 variable. In addition my success2017 variable, technically a count variable, does not vary substantially across my 22 clusters:
I have searched the forum to make sure the issue is not due to sparse data or data transformations. I am using Stata 18, the estout package to save my regression, but the issue persists with estimates store.
Compute the AME for one side:
However, testing the AME for the other side does not work the other side of my interaction does not work:
Code:
. tab success2017 if sample1 == 1 Number of | successful | terror | attacks | Freq. Percent Cum. ------------+----------------------------------- 0 | 267 43.27 43.27 1 | 151 24.47 67.75 2 | 96 15.56 83.31 3 | 36 5.83 89.14 4 | 12 1.94 91.09 9 | 55 8.91 100.00 ------------+----------------------------------- Total | 617 100.00
Code:
. eststo m4s1: regress entrepreneur c.success2017##c.wexp_dec yrschl sex age wealth i.agegrp1 i.ftempst i.mtempst i.industry i.region, vce(cluster region) note: 81829.region omitted because of collinearity. Linear regression Number of obs = 12,905 F(20, 21) = . Prob > F = . R-squared = 0.2155 Root MSE = .34502 (Std. err. adjusted for 22 clusters in region) ------------------------------------------------------------------------------------------------------------------------------------------ | Robust binary | Coefficient std. err. t P>|t| [95% conf. interval] -------------------------------------------------------------------------+---------------------------------------------------------------- success2017 | -.0120273 .0019472 -6.18 0.000 -.0160766 -.0079779 wexp_dec | .0152098 .0062019 2.45 0.023 .0023123 .0281073 | c.success2017#c.wexp_dec | -.000852 .0008696 -0.98 0.338 -.0026603 .0009564 | yrschl | -.0064609 .0008229 -7.85 0.000 -.0081722 -.0047495 sex | .0697372 .0173574 4.02 0.001 .0336406 .1058338 age | .0048026 .0010555 4.55 0.000 .0026076 .0069976 wealth | .0323867 .0054624 5.93 0.000 .0210269 .0437464 | agegrp1 | 20-29 | .037372 .0119208 3.14 0.005 .0125814 .0621627 30-39 | .0574466 .0151769 3.79 0.001 .0258845 .0890088 40-49 | .0624703 .0205178 3.04 0.006 .0198011 .1051395 50-59 | .0043326 .0314286 0.14 0.892 -.0610267 .069692 | ftempst | Employer | .0952247 .0209271 4.55 0.000 .0517044 .138745 Self-employed | .0862964 .0184917 4.67 0.000 .0478408 .124752 Unpaid Family Worker | .0545797 .0222154 2.46 0.023 .0083803 .1007791 No job | -.0046843 .0160046 -0.29 0.773 -.0379677 .0285991 | mtempst | Employer | .1440686 .0704173 2.05 0.053 -.0023722 .2905093 Self-employed | .0144593 .0372725 0.39 0.702 -.0630531 .0919718 Unpaid Family Worker | .0200647 .0243945 0.82 0.420 -.0306665 .0707959 No job | .0047677 .0105402 0.45 0.656 -.0171518 .0266872 | industry | B: Mining and quarrying | -.262818 .0375383 -7.00 0.000 -.3408832 -.1847528 C: Manufacturing | -.1115117 .0235172 -4.74 0.000 -.1604184 -.062605 D: Electricity; gas ;steam and air conditioning supply | -.2573552 .0281989 -9.13 0.000 -.3159981 -.1987123 E: Water supply; sewage; waste management and remediation activities | -.2556701 .0395117 -6.47 0.000 -.3378392 -.173501 F: Construction | -.1712579 .0211831 -8.08 0.000 -.2153106 -.1272051 G: Wholesale and retail trade; repair of motor vehicles and motorcycles | .1484533 .0279618 5.31 0.000 .0903034 .2066031 H: Transportation and storage | -.0223906 .0284908 -0.79 0.441 -.0816405 .0368593 I: Accomodation and food service activities | -.0902359 .0317633 -2.84 0.010 -.1562913 -.0241805 J: Information and communication | -.1550058 .0329322 -4.71 0.000 -.2234921 -.0865195 K: Financial and insurance activities | -.2707193 .026727 -10.13 0.000 -.3263011 -.2151375 L: Real estate activities | -.1381896 .0993548 -1.39 0.179 -.3448093 .0684301 M: Professional, scientific and technical activities | -.0211367 .0407144 -0.52 0.609 -.1058068 .0635335 N: Administrative and support service activities | -.0987987 .0404536 -2.44 0.024 -.1829266 -.0146707 O: Public administration and defense; compulsory social security | -.2975099 .0312719 -9.51 0.000 -.3625433 -.2324765 P: Education | -.3169317 .0261864 -12.10 0.000 -.3713894 -.262474 Q: Human health and social work activities | -.2670172 .0345601 -7.73 0.000 -.338889 -.1951455 R: Arts, entertainment and recreation | -.0839496 .066044 -1.27 0.218 -.2212956 .0533963 S: Other service activities | .0084707 .0326348 0.26 0.798 -.059397 .0763384 T: Activities of households as employers | -.2044904 .0489098 -4.18 0.000 -.3062038 -.1027769 | region | 81802 | -.054901 .004231 -12.98 0.000 -.0636998 -.0461022 81803 | -.1267773 .0077364 -16.39 0.000 -.142866 -.1106886 81804 | -.1195553 .0076251 -15.68 0.000 -.1354126 -.103698 81811 | -.0363183 .0045726 -7.94 0.000 -.0458275 -.0268091 81812 | -.0125566 .0030342 -4.14 0.000 -.0188666 -.0062466 81813 | -.0139016 .0037377 -3.72 0.001 -.0216746 -.0061286 81814 | -.0363994 .0044659 -8.15 0.000 -.0456868 -.0271121 81815 | .0582761 .0057104 10.21 0.000 .0464006 .0701516 81816 | .0440068 .0037471 11.74 0.000 .0362143 .0517993 81817 | -.0452524 .0033462 -13.52 0.000 -.0522113 -.0382935 81818 | .0480972 .0061692 7.80 0.000 .0352676 .0609268 81819 | -.0714969 .0035887 -19.92 0.000 -.07896 -.0640338 81821 | -.0198335 .0029578 -6.71 0.000 -.0259846 -.0136824 81822 | .0057244 .0049058 1.17 0.256 -.0044778 .0159267 81823 | .0127686 .0071789 1.78 0.090 -.0021606 .0276979 81824 | .0555532 .0046511 11.94 0.000 .0458807 .0652256 81825 | .0521494 .0038058 13.70 0.000 .0442349 .060064 81826 | .0199532 .0033738 5.91 0.000 .012937 .0269694 81827 | .0072533 .004321 1.68 0.108 -.0017326 .0162392 81828 | -.0804134 .0025937 -31.00 0.000 -.0858072 -.0750195 81829 | 0 (omitted) | _cons | .0783073 .0301393 2.60 0.017 .0156292 .1409853 ------------------------------------------------------------------------------------------------------------------------------------------
Code:
margins, dydx(success2017) at(wexp_dec = (0(0.1)5)) --- Code surpressed, but works ---
Code:
. margins, dydx(wexp_dec) at(success2017 = (0(0.5)2)) Average marginal effects Number of obs = 12,905 Model VCE: Robust Expression: Linear prediction, predict() dy/dx wrt: wexp_dec 1._at: success2017 = 0 2._at: success2017 = .5 3._at: success2017 = 1 4._at: success2017 = 1.5 5._at: success2017 = 2 ------------------------------------------------------------------------------ | Delta-method | dy/dx std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- wexp_dec | _at | 1 | . (not estimable) 2 | . (not estimable) 3 | . (not estimable) 4 | . (not estimable) 5 | . (not estimable) ------------------------------------------------------------------------------
Comment