Hi, I have the following data below in patients who have all experience an event of thrombosis. What I am trying to do is get incidence of thrombosis per 100,000 persons using the total population data stratified by gender. Secondly, I want to repeat that analysis and adjust for age. I am not sure how to remotely start this process. I started to use a poisson regression model but it seems this gives incidence rates based on individual observations and can't estimate per 100,000 people. Thank you for your help.
---------------------- copy starting from the next line -----------------------
------------------ copy up to and including the previous line ------------------
Listed 100 out of 307 observations
Use the count() option to list more
.
---------------------- copy starting from the next line -----------------------
Code:
* Example generated by -dataex-. For more info, type help dataex clear input long id float age str34 sex str113 race str7 survived long censustractid str8 medianhousehold str4 medianage long(totalpopulation white) 102472 55 "Male" "White" "No" 31532 "28611" "31" 4355 1725 103810 72 "Male" "Black/African-American" "No" 34213 "71250" "44.7" 2602 2082 103864 94 "Female" "White" "No" 13010 "72813" "42.9" 2928 2769 103867 87 "Male" "Unknown" "No" 15748 "31442" "41.7" 1381 589 103869 70 "Male" "White" "No" 25732 "43883" "31.8" 3701 3241 103882 27 "Male" "White" "No" 22839 "48365" "41.2" 4431 4035 103885 67 "Female" "Black/African-American" "Yes" 22852 "15720" "23.6" 1499 376 103972 22 "Male" "Unknown" "No" 6661 "36280" "41.1" 3963 1268 103987 54 "Female" "Unknown" "No" 29532 "48405" "38.4" 5962 5403 103989 81 "Female" "White" "No" 29458 "74167" "53.3" 4314 3927 103999 84 "Female" "White" "No" 25711 "70169" "36.1" 3784 3377 104003 56 "Female" "Unknown" "Yes" 6470 "91023" "39.8" 5684 5053 104050 55 "Female" "Unknown" "No" 12866 "11397" "21.6" 3709 218 104052 77 "Male" "Black/African-American" "No" 14864 "31607" "20.4" 2483 505 104053 44 "Female" "White" "No" 14850 "15172" "21.8" 3523 1222 104054 75 "Female" "Unknown" "No" 14975 "50655" "47.5" 3153 2402 104055 69 "Female" "Black/African-American" "No" 14912 "46116" "33.4" 9627 26 104056 54 "Male" "White" "Yes" 14965 "62745" "28.9" 4962 2975 104068 59 "Female" "Asian" "Yes" 15900 "60310" "37.6" 5659 1097 104069 92 "Male" "Asian" "Yes" 15941 "93750" "34.5" 1948 650 104070 82 "Male" "Unknown" "Yes" 16161 "47806" "40.9" 4982 823 104073 73 "Female" "White" "Yes" 34279 "47273" "33.5" 3673 2639 104075 82 "Female" "Native Hawaiian/Pacific Islander" "No" 22831 "35074" "42.2" 4011 2600 104077 80 "Female" "White" "No" 22821 "43309" "56" 2189 2037 104180 60 "Female" "White" "No" 29415 "44196" "38.9" 946 754 104188 44 "Male" "White" "No" 29300 "43542" "31.5" 5803 4301 104192 98 "Female" "Black/African-American" "No" 29294 "59286" "35.1" 3645 2449 104204 73 "Male" "Black/African-American" "No" 29297 "66216" "39" 4303 3039 104256 73 "Male" "White" "No" 25523 "62796" "27" 2856 1566 104259 43 "Male" "White" "No" 6671 "18231" "32.8" 3271 2405 104264 26 "Female" "Unknown" "Yes" 8645 "65214" "34.3" 5123 3770 104271 55 "Female" "White" "No" . "" "" . . 104277 65 "Female" "Asian" "Yes" 6615 "97829" "49.7" 6830 5862 104282 63 "Male" "White" "No" 15598 "54345" "39.4" 9700 3507 104283 53 "Male" "White" "Yes" 33345 "56818" "34.2" 7693 5917 104284 77 "Female" "Hispanic/Latino" "No" 12877 "22880" "30.4" 3483 937 104285 69 "Male" "White" "No" 14856 "56190" "39.5" 1997 625 104287 85 "Male" "White" "No" 22908 "62975" "34.8" 5276 4954 104288 76 "Male" "White" "No" 16118 "67422" "38.5" 6605 1772 104289 61 "Female" "Unknown" "No" 16072 "91086" "42.8" 5496 758 104290 37 "Male" "Asian" "No" 15978 "57544" "39.6" 4942 816 104291 81 "Male" "Unknown" "No" 16129 "61558" "37.8" 8233 4417 104292 80 "Male" "White" "No" 22964 "63586" "42.7" 7643 7166 104294 51 "Male" "White" "No" 14790 "65185" "35.7" 8920 4311 104295 54 "Female" "White" "No" 14777 "80386" "43" 8241 7418 104298 68 "Male" "White" "No" 11169 "57537" "41" 7241 2256 104299 57 "Female" "White" "No" 11056 "31740" "27.1" 3892 1307 104306 81 "Female" "White" "Yes" 11117 "50025" "49.7" 3586 3159 104312 38 "Female" "White" "No" 11125 "54672" "32.6" 5599 3135 104353 65 "Male" "White" "No" 34434 "33370" "33.7" 4419 3189 104357 35 "Male" "Unknown" "No" 8635 "38229" "43.2" 2721 2408 104364 88 "Male" "Unknown" "No" 8711 "88730" "38.4" 9872 6267 104378 66 "Male" "Unknown" "No" 8591 "57500" "30.7" 6579 4091 104499 60 "Female" "White" "No" 8355 "35280" "37.3" 4384 3205 104505 86 "Male" "Unknown" "No" 8595 "67227" "30.1" 3542 2067 104511 74 "Male" "Hispanic/Latino" "No" 6757 "59667" "35.1" 8160 6307 104513 78 "Male" "White" "No" 6727 "62813" "36.1" 5677 4420 104516 80 "Female" "Unknown" "No" 29467 "48047" "46.3" 2315 2077 104532 47 "Male" "Black/African-American" "Yes" 12864 "18602" "32.9" 5113 757 104533 56 "Male" "Black/African-American" "No" 14863 "18722" "37.8" 2532 204 104534 77 "Male" "White" "Yes" 14899 "17545" "40" 3580 269 104537 64 "Male" "White" "No" 27528 "16955" "34.1" 2647 511 104538 60 "Female" "Black/African-American" "No" 27575 "33727" "37.3" 4534 2899 104540 56 "Male" "Unknown" "No" 16034 "35938" "30.2" 6158 615 104553 44 "Male" "White" "No" 16503 "38365" "40.8" 4978 4733 104568 65 "Male" "White" "Yes" 33508 "87301" "35.4" 9155 5716 104569 83 "Female" "Unknown" "No" 15866 "87546" "50.1" 5894 677 104570 59 "Male" "Unknown" "No" 15896 "94875" "43.3" 4111 922 104571 49 "Female" "Unknown" "No" 15986 "90167" "31.6" 7364 954 104573 55 "Female" "Unknown" "Yes" 16065 "72940" "41" 4377 649 104577 69 "Female" "White" "No" 25484 "39056" "35.7" 2783 1950 104582 23 "Male" "Black/African-American" "No" 33383 "69718" "34.3" 5285 3975 104584 73 "Female" "Black/African-American" "No" 33489 "78092" "41.8" 3344 2266 104586 77 "Female" "Black/African-American" "No" 33297 "60069" "27" 4364 3264 104593 51 "Female" "White" "No" 29554 "54776" "40.5" 5037 3999 104594 70 "Female" "Unknown" "No" 29443 "61857" "41.2" 5270 4917 104596 91 "Female" "Unknown" "Yes" 29455 "71453" "47.2" 3318 2853 104597 89 "Male" "Unknown" "No" 29455 "71453" "47.2" 3318 2853 104598 80 "Male" "White" "Yes" 29443 "61857" "41.2" 5270 4917 104599 71 "Male" "Unknown" "No" 29458 "74167" "53.3" 4314 3927 104600 71 "Male" "Black/African-American" "No" 14848 "19912" "32.4" 1933 83 104601 57 "Female" "Black/African-American" "No" 14919 "57784" "48.8" 5517 116 104602 76 "Male" "Black/African-American" "Yes" 14891 "26157" "31.7" 4190 114 104603 62 "Male" "Unknown" "No" 16125 "62778" "43.4" 5091 1268 104605 61 "Male" "Unknown" "No" 16023 "47822" "34" 5526 737 104606 38 "Male" "Unknown" "No" 15930 "105508" "32.9" 3014 524 104609 68 "Male" "White" "No" 14779 "61341" "38.3" 7755 4956 104626 89 "Female" "White" "No" 11117 "50025" "49.7" 3586 3159 104628 59 "Male" "White" "No" 11127 "67433" "42.1" 1829 1463 104631 53 "Male" "White" "No" 11062 "45482" "34.4" 3695 2223 104640 63 "Male" "White" "No" 25711 "70169" "36.1" 3784 3377 104652 88 "Male" "Hispanic/Latino" "No" 41995 "70972" "32.6" 10795 10341 104654 67 "Female" "Unknown" "No" 8671 "70200" "36.3" 5330 3603 104656 78 "Female" "White" "Yes" 22924 "76979" "31.5" 5755 4244 104658 62 "Male" "White" "No" 22838 "27250" "31.2" 5622 4467 104661 65 "Male" "White" "No" 22974 "47671" "34.6" 8377 6050 104662 61 "Male" "Black/African-American" "No" 42457 "33222" "39.6" 4049 1171 104676 92 "Male" "Unknown" "No" 8632 "38072" "29.1" 6999 4523 104687 55 "Male" "White" "No" 42808 "94865" "33" 20376 17812 104694 67 "Male" "Unknown" "Yes" 6625 "34614" "31.9" 7851 6497 end
Listed 100 out of 307 observations
Use the count() option to list more
.
Comment