Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Incidence rates per 100,000 persons

    Hi, I have the following data below in patients who have all experience an event of thrombosis. What I am trying to do is get incidence of thrombosis per 100,000 persons using the total population data stratified by gender. Secondly, I want to repeat that analysis and adjust for age. I am not sure how to remotely start this process. I started to use a poisson regression model but it seems this gives incidence rates based on individual observations and can't estimate per 100,000 people. Thank you for your help.

    ---------------------- copy starting from the next line -----------------------
    Code:
    * Example generated by -dataex-. For more info, type help dataex
    clear
    input long id float age str34 sex str113 race str7 survived long censustractid str8 medianhousehold str4 medianage long(totalpopulation white)
    102472 55 "Male"   "White"                            "No"  31532 "28611"  "31"    4355  1725
    103810 72 "Male"   "Black/African-American"           "No"  34213 "71250"  "44.7"  2602  2082
    103864 94 "Female" "White"                            "No"  13010 "72813"  "42.9"  2928  2769
    103867 87 "Male"   "Unknown"                          "No"  15748 "31442"  "41.7"  1381   589
    103869 70 "Male"   "White"                            "No"  25732 "43883"  "31.8"  3701  3241
    103882 27 "Male"   "White"                            "No"  22839 "48365"  "41.2"  4431  4035
    103885 67 "Female" "Black/African-American"           "Yes" 22852 "15720"  "23.6"  1499   376
    103972 22 "Male"   "Unknown"                          "No"   6661 "36280"  "41.1"  3963  1268
    103987 54 "Female" "Unknown"                          "No"  29532 "48405"  "38.4"  5962  5403
    103989 81 "Female" "White"                            "No"  29458 "74167"  "53.3"  4314  3927
    103999 84 "Female" "White"                            "No"  25711 "70169"  "36.1"  3784  3377
    104003 56 "Female" "Unknown"                          "Yes"  6470 "91023"  "39.8"  5684  5053
    104050 55 "Female" "Unknown"                          "No"  12866 "11397"  "21.6"  3709   218
    104052 77 "Male"   "Black/African-American"           "No"  14864 "31607"  "20.4"  2483   505
    104053 44 "Female" "White"                            "No"  14850 "15172"  "21.8"  3523  1222
    104054 75 "Female" "Unknown"                          "No"  14975 "50655"  "47.5"  3153  2402
    104055 69 "Female" "Black/African-American"           "No"  14912 "46116"  "33.4"  9627    26
    104056 54 "Male"   "White"                            "Yes" 14965 "62745"  "28.9"  4962  2975
    104068 59 "Female" "Asian"                            "Yes" 15900 "60310"  "37.6"  5659  1097
    104069 92 "Male"   "Asian"                            "Yes" 15941 "93750"  "34.5"  1948   650
    104070 82 "Male"   "Unknown"                          "Yes" 16161 "47806"  "40.9"  4982   823
    104073 73 "Female" "White"                            "Yes" 34279 "47273"  "33.5"  3673  2639
    104075 82 "Female" "Native Hawaiian/Pacific Islander" "No"  22831 "35074"  "42.2"  4011  2600
    104077 80 "Female" "White"                            "No"  22821 "43309"  "56"    2189  2037
    104180 60 "Female" "White"                            "No"  29415 "44196"  "38.9"   946   754
    104188 44 "Male"   "White"                            "No"  29300 "43542"  "31.5"  5803  4301
    104192 98 "Female" "Black/African-American"           "No"  29294 "59286"  "35.1"  3645  2449
    104204 73 "Male"   "Black/African-American"           "No"  29297 "66216"  "39"    4303  3039
    104256 73 "Male"   "White"                            "No"  25523 "62796"  "27"    2856  1566
    104259 43 "Male"   "White"                            "No"   6671 "18231"  "32.8"  3271  2405
    104264 26 "Female" "Unknown"                          "Yes"  8645 "65214"  "34.3"  5123  3770
    104271 55 "Female" "White"                            "No"      . ""       ""         .     .
    104277 65 "Female" "Asian"                            "Yes"  6615 "97829"  "49.7"  6830  5862
    104282 63 "Male"   "White"                            "No"  15598 "54345"  "39.4"  9700  3507
    104283 53 "Male"   "White"                            "Yes" 33345 "56818"  "34.2"  7693  5917
    104284 77 "Female" "Hispanic/Latino"                  "No"  12877 "22880"  "30.4"  3483   937
    104285 69 "Male"   "White"                            "No"  14856 "56190"  "39.5"  1997   625
    104287 85 "Male"   "White"                            "No"  22908 "62975"  "34.8"  5276  4954
    104288 76 "Male"   "White"                            "No"  16118 "67422"  "38.5"  6605  1772
    104289 61 "Female" "Unknown"                          "No"  16072 "91086"  "42.8"  5496   758
    104290 37 "Male"   "Asian"                            "No"  15978 "57544"  "39.6"  4942   816
    104291 81 "Male"   "Unknown"                          "No"  16129 "61558"  "37.8"  8233  4417
    104292 80 "Male"   "White"                            "No"  22964 "63586"  "42.7"  7643  7166
    104294 51 "Male"   "White"                            "No"  14790 "65185"  "35.7"  8920  4311
    104295 54 "Female" "White"                            "No"  14777 "80386"  "43"    8241  7418
    104298 68 "Male"   "White"                            "No"  11169 "57537"  "41"    7241  2256
    104299 57 "Female" "White"                            "No"  11056 "31740"  "27.1"  3892  1307
    104306 81 "Female" "White"                            "Yes" 11117 "50025"  "49.7"  3586  3159
    104312 38 "Female" "White"                            "No"  11125 "54672"  "32.6"  5599  3135
    104353 65 "Male"   "White"                            "No"  34434 "33370"  "33.7"  4419  3189
    104357 35 "Male"   "Unknown"                          "No"   8635 "38229"  "43.2"  2721  2408
    104364 88 "Male"   "Unknown"                          "No"   8711 "88730"  "38.4"  9872  6267
    104378 66 "Male"   "Unknown"                          "No"   8591 "57500"  "30.7"  6579  4091
    104499 60 "Female" "White"                            "No"   8355 "35280"  "37.3"  4384  3205
    104505 86 "Male"   "Unknown"                          "No"   8595 "67227"  "30.1"  3542  2067
    104511 74 "Male"   "Hispanic/Latino"                  "No"   6757 "59667"  "35.1"  8160  6307
    104513 78 "Male"   "White"                            "No"   6727 "62813"  "36.1"  5677  4420
    104516 80 "Female" "Unknown"                          "No"  29467 "48047"  "46.3"  2315  2077
    104532 47 "Male"   "Black/African-American"           "Yes" 12864 "18602"  "32.9"  5113   757
    104533 56 "Male"   "Black/African-American"           "No"  14863 "18722"  "37.8"  2532   204
    104534 77 "Male"   "White"                            "Yes" 14899 "17545"  "40"    3580   269
    104537 64 "Male"   "White"                            "No"  27528 "16955"  "34.1"  2647   511
    104538 60 "Female" "Black/African-American"           "No"  27575 "33727"  "37.3"  4534  2899
    104540 56 "Male"   "Unknown"                          "No"  16034 "35938"  "30.2"  6158   615
    104553 44 "Male"   "White"                            "No"  16503 "38365"  "40.8"  4978  4733
    104568 65 "Male"   "White"                            "Yes" 33508 "87301"  "35.4"  9155  5716
    104569 83 "Female" "Unknown"                          "No"  15866 "87546"  "50.1"  5894   677
    104570 59 "Male"   "Unknown"                          "No"  15896 "94875"  "43.3"  4111   922
    104571 49 "Female" "Unknown"                          "No"  15986 "90167"  "31.6"  7364   954
    104573 55 "Female" "Unknown"                          "Yes" 16065 "72940"  "41"    4377   649
    104577 69 "Female" "White"                            "No"  25484 "39056"  "35.7"  2783  1950
    104582 23 "Male"   "Black/African-American"           "No"  33383 "69718"  "34.3"  5285  3975
    104584 73 "Female" "Black/African-American"           "No"  33489 "78092"  "41.8"  3344  2266
    104586 77 "Female" "Black/African-American"           "No"  33297 "60069"  "27"    4364  3264
    104593 51 "Female" "White"                            "No"  29554 "54776"  "40.5"  5037  3999
    104594 70 "Female" "Unknown"                          "No"  29443 "61857"  "41.2"  5270  4917
    104596 91 "Female" "Unknown"                          "Yes" 29455 "71453"  "47.2"  3318  2853
    104597 89 "Male"   "Unknown"                          "No"  29455 "71453"  "47.2"  3318  2853
    104598 80 "Male"   "White"                            "Yes" 29443 "61857"  "41.2"  5270  4917
    104599 71 "Male"   "Unknown"                          "No"  29458 "74167"  "53.3"  4314  3927
    104600 71 "Male"   "Black/African-American"           "No"  14848 "19912"  "32.4"  1933    83
    104601 57 "Female" "Black/African-American"           "No"  14919 "57784"  "48.8"  5517   116
    104602 76 "Male"   "Black/African-American"           "Yes" 14891 "26157"  "31.7"  4190   114
    104603 62 "Male"   "Unknown"                          "No"  16125 "62778"  "43.4"  5091  1268
    104605 61 "Male"   "Unknown"                          "No"  16023 "47822"  "34"    5526   737
    104606 38 "Male"   "Unknown"                          "No"  15930 "105508" "32.9"  3014   524
    104609 68 "Male"   "White"                            "No"  14779 "61341"  "38.3"  7755  4956
    104626 89 "Female" "White"                            "No"  11117 "50025"  "49.7"  3586  3159
    104628 59 "Male"   "White"                            "No"  11127 "67433"  "42.1"  1829  1463
    104631 53 "Male"   "White"                            "No"  11062 "45482"  "34.4"  3695  2223
    104640 63 "Male"   "White"                            "No"  25711 "70169"  "36.1"  3784  3377
    104652 88 "Male"   "Hispanic/Latino"                  "No"  41995 "70972"  "32.6" 10795 10341
    104654 67 "Female" "Unknown"                          "No"   8671 "70200"  "36.3"  5330  3603
    104656 78 "Female" "White"                            "Yes" 22924 "76979"  "31.5"  5755  4244
    104658 62 "Male"   "White"                            "No"  22838 "27250"  "31.2"  5622  4467
    104661 65 "Male"   "White"                            "No"  22974 "47671"  "34.6"  8377  6050
    104662 61 "Male"   "Black/African-American"           "No"  42457 "33222"  "39.6"  4049  1171
    104676 92 "Male"   "Unknown"                          "No"   8632 "38072"  "29.1"  6999  4523
    104687 55 "Male"   "White"                            "No"  42808 "94865"  "33"   20376 17812
    104694 67 "Male"   "Unknown"                          "Yes"  6625 "34614"  "31.9"  7851  6497
    end
    ------------------ copy up to and including the previous line ------------------

    Listed 100 out of 307 observations
    Use the count() option to list more

    .

  • #2
    In order to get the incidence of thrombosis, you need an estimate of the number of people with thrombosis in the population and an estimate of the number of people without thrombosis in the population. How do you expect to get these from a dataset with only people with thrombosis?
    ---------------------------------
    Maarten L. Buis
    University of Konstanz
    Department of history and sociology
    box 40
    78457 Konstanz
    Germany
    http://www.maartenbuis.nl
    ---------------------------------

    Comment


    • #3
      Hi Maarten, I do have a numerator and denominator for the dataset that I forgot to include in the dateex. My numerator actually has a variable that is the number of thrombotic events in each census. The code I have successful used to arcuate the incidence rates is below but I am not sure how to adjust the rates and still get rates per 100,000 persons. I can use the poisson model but then it doesn't give me per 100k persons.

      gen incidence_rate = (sum_thrombotic_evets / totalpopulation) * 100000

      Comment


      • #4
        Assuming you have correctly implemented a Poisson model, you can get the adjusted incidence rate per 100,000 by following it with:

        Code:
        margins, expression(100000*predict(ir))

        Comment

        Working...
        X