Hello! I am having some trouble running the necessary model diagnostics for a fixed effects regression undertaken with reghdfe for a three-dimensional panel dataset (index variables are reporting_econ_id, partner_econ_id and year). I first set up the panel structure of my dataset like this:
The resulting dataset looks like this:
I run several nested models, all of which present a good (<0.001) F-statistic. I am presenting below the last model I run and its output:
However, I am now running into issues trying to run model diagnostics, such as B-P/LM test using xttest2 or Pasaran CD test using xtcsd. For xttest2, I receive the following error: "Error: too few common observations across panel to compute full rank VCE"; while for xtcsd I receive the following "Error: The panel is highly unbalanced. Not enough common observations across panel to perform Pesaran's test. Insufficient observations". I believe these erros might be due to the fact that my panel dataset has panel_id as the cross-section identifier. How can I fix these issues and still run my model diagnostics? Thank you in advance!
Code:
encode reportingecon, gen(reporting_econ_id) encode partnerecon, gen(partner_econ_id) egen panel_id = group(reporting_econ_id partner_econ_id) xtset panel_id year
Code:
Observations: 12,200 Variables: 65 7 Oct 2024 08:40 ----------------------------------------------------------------------------------------- Variable Storage Display Value name type format label Variable label ----------------------------------------------------------------------------------------- partnerecon str14 %14s PartnerEcon reportingecon str37 %37s ReportingEcon agree float %9.0g year int %8.0g Year idealpointdis~e float %9.0g IdealPointDistance region str27 %27s buildingprodu~x float %9.0g Building Productive Capacity.x economicinfra~x float %9.0g Economic Infrastructure.x tradepolicyre~x float %9.0g Trade Policy & Regulations.x traderelateda~x float %8.0g Trade-related Adjustment.x total_aftx float %9.0g Total_AfT.x col_fr byte %8.0g COL_FR col_uk byte %8.0g COL_UK col_us byte %8.0g COL_US col_jp byte %8.0g COL_JP dist float %8.0g distcap float %8.0g distw float %8.0g distwces float %8.0g inflowsofasyl~s double %10.0g Inflows of asylum seekers inflowsoffore~n long %8.0g Inflows of foreign population incomegroup int %8.0g IncomeGroup hdi double %10.0g le float %9.0g mys float %8.0g gni_capita double %10.0g lldcs byte %8.0g LLDCs count_interna~d int %8.0g count_intrast~e int %8.0g count_interst~e int %8.0g share_world_m~h float %8.0g Share_World_Merch civ_liberties byte %8.0g pol_freedom byte %8.0g balanced_exp float %8.0g Balanced_EXP balanced_imp float %8.0g Balanced_IMP final_exp float %8.0g Final_EXP final_imp float %8.0g Final_IMP goodsexports float %8.0g GoodsExports goodsimports float %8.0g GoodsImports net_fdi double %8.0g Net_FDI sum_total_aft float %8.0g other_aft float %8.0g net_oda float %8.0g Net_ODA gdp float %8.0g GDP natural_resou~s float %8.0g reporting_eco~d long %37.0g reporting_econ_id ReportingEcon partner_econ_id long %14.0g partner_econ_id PartnerEcon panel_id float %9.0g group(reporting_econ_id partner_econ_id) mean_totalaft float %9.0g ln_aft float %9.0g ln_gnicap float %9.0g ln_servicesexp float %9.0g ln_servicesimp float %9.0g ln_goodsexp float %9.0g ln_goodsimp float %9.0g ln_fdi float %9.0g ln_gdp float %9.0g ln_otheraft float %9.0g ln_oda float %9.0g ln_dist float %9.0g partner_us float %9.0g partner_jp float %9.0g partner_fr float %9.0g partner_uk float %9.0g partner_ge float %9.0g ----------------------------------------------------------------------------------------- Sorted by: panel_id year
Code:
reghdfe ln_aft /// c.hdi#i.partner_econ_id /// c.ln_gnicap#i.partner_econ_id /// c.pol_freedom#i.partner_econ_id /// lldcs#i.partner_econ_id /// c.share_world_merch#i.partner_econ_id /// c.count_internationalised#i.partner_econ_id /// c.count_intrastate#i.partner_econ_id /// c.agree#i.partner_econ_id /// c.ln_dist#i.partner_econ_id /// c.inflowsofforeignpopulation#i.partner_econ_id /// c.col_fr#i.partner_fr /// c.col_uk#i.partner_uk /// c.col_us#i.partner_us /// c.ln_servicesexp#i.partner_econ_id /// c.ln_servicesimp#i.partner_econ_id /// c.ln_goodsexp#i.partner_econ_id /// c.ln_goodsimp#i.partner_econ_id /// c.ln_fdi#i.partner_econ_id /// c.ln_gdp#i.partner_econ_id /// c.ln_otheraft#i.partner_econ_id /// c.ln_oda#i.partner_econ_id /// c.natural_resources#i.partner_econ_id, /// absorb(reporting_econ_id year) /// vce(cluster reporting_econ_id)
Code:
HDFE Linear regression Number of obs = 3,394 Absorbing 2 HDFE groups F( 101, 105) = 21660.24 Statistics robust to heteroskedasticity Prob > F = 0.0000 R-squared = 0.6215 Adj R-squared = 0.5958 Within R-sq. = 0.3635 Number of clusters (reporting_econ_id) = 106Root MSE = 1.5892 (Std. err. adjusted for 106 clusters in reporting_econ_id) -------------------------------------------------------------------------------------- | Robust ln_aft | Coefficient std. err. t P>|t| [95% conf. interval] ---------------------+---------------------------------------------------------------- partner_econ_id#| c.hdi | France | -8.365468 4.863386 -1.72 0.088 -18.00866 1.277727 Germany | 3.294893 4.579765 0.72 0.473 -5.785934 12.37572 Japan | -.2702511 5.346708 -0.05 0.960 -10.87179 10.33128 United Kingdom | -21.16168 8.192214 -2.58 0.011 -37.40532 -4.91803 United States | 3.296014 4.816464 0.68 0.495 -6.254144 12.84617 | partner_econ_id#| c.ln_gnicap | France | 1.654401 .3692053 4.48 0.000 .9223349 2.386467 Germany | -.2690675 .3143735 -0.86 0.394 -.892412 .354277 Japan | .1885545 .4065309 0.46 0.644 -.6175211 .9946301 United Kingdom | 1.550292 .751632 2.06 0.042 .0599441 3.040639 United States | -.1473826 .3312212 -0.44 0.657 -.8041331 .5093679 | partner_econ_id#| c.pol_freedom | France | -.020727 .1377542 -0.15 0.881 -.2938681 .2524141 Germany | -.2221254 .093777 -2.37 0.020 -.4080678 -.036183 Japan | -.1019459 .09783 -1.04 0.300 -.2959248 .092033 United Kingdom | -.0557523 .2033243 -0.27 0.784 -.4589068 .3474023 United States | -.0473356 .1130292 -0.42 0.676 -.2714517 .1767804 | lldcs#| partner_econ_id | 0#Germany | 19.686 8.013725 2.46 0.016 3.796268 35.57574 0#Japan | 33.09791 7.802076 4.24 0.000 17.62784 48.56799 0#United Kingdom | 14.82509 14.15851 1.05 0.297 -13.24861 42.89879 0#United States | 1.247056 8.29337 0.15 0.881 -15.19716 17.69128 1#France | -2.582377 8.305405 -0.31 0.756 -19.05046 13.88571 1#Germany | 17.4672 7.124526 2.45 0.016 3.34058 31.59382 1#Japan | 30.54564 7.63674 4.00 0.000 15.4034 45.68789 1#United Kingdom | 15.82774 14.82191 1.07 0.288 -13.56137 45.21685 1#United States | 0 (omitted) | partner_econ_id#| c.share_world_merch | France | 5.06e-09 1.56e-09 3.25 0.002 1.97e-09 8.15e-09 Germany | 7.84e-09 1.87e-09 4.20 0.000 4.14e-09 1.15e-08 Japan | 1.33e-09 1.75e-09 0.76 0.450 -2.14e-09 4.80e-09 United Kingdom | 4.03e-09 2.98e-09 1.35 0.180 -1.89e-09 9.94e-09 United States | -5.86e-10 1.88e-09 -0.31 0.756 -4.32e-09 3.15e-09 | partner_econ_id#| c. | count_internationa~d | France | -.1853612 .3224705 -0.57 0.567 -.8247606 .4540381 Germany | .3177221 .2043412 1.55 0.123 -.0874488 .722893 Japan | -1.002047 .3420969 -2.93 0.004 -1.680362 -.3237322 United Kingdom | 1.223445 .3890161 3.14 0.002 .4520983 1.994792 United States | .3365063 .2292649 1.47 0.145 -.1180837 .7910963 | partner_econ_id#| c.count_intrastate | France | -.1750101 .2163461 -0.81 0.420 -.6039844 .2539642 Germany | -.0597992 .1261983 -0.47 0.637 -.3100271 .1904287 Japan | .1070002 .1399799 0.76 0.446 -.170554 .3845544 United Kingdom | .0940048 .2631432 0.36 0.722 -.4277596 .6157693 United States | -.0741203 .2729971 -0.27 0.787 -.6154232 .4671826 | partner_econ_id#| c.agree | France | -.3751798 2.000095 -0.19 0.852 -4.341 3.59064 Germany | -.8791131 1.258728 -0.70 0.486 -3.374939 1.616713 Japan | -3.347968 1.446109 -2.32 0.023 -6.215335 -.4806007 United Kingdom | -7.730057 4.073688 -1.90 0.061 -15.80743 .3473138 United States | 1.982738 1.11721 1.77 0.079 -.2324823 4.197958 | partner_econ_id#| c.ln_dist | France | 1.06597 .4135629 2.58 0.011 .2459514 1.885989 Germany | -.2094744 .2356301 -0.89 0.376 -.6766853 .2577365 Japan | -1.430836 .3959467 -3.61 0.000 -2.215925 -.6457466 United Kingdom | 3.303015 1.02918 3.21 0.002 1.26234 5.343689 United States | -.3303684 .4735732 -0.70 0.487 -1.269377 .6086397 | partner_econ_id#| c. | inflowsofforeignpo~n | France | .0000397 .0000323 1.23 0.221 -.0000242 .0001037 Germany | -4.63e-06 9.71e-06 -0.48 0.635 -.0000239 .0000146 Japan | .0000239 .0000188 1.27 0.208 -.0000135 .0000612 United Kingdom | .0000103 .000019 0.54 0.588 -.0000273 .0000479 United States | 1.34e-06 7.16e-06 0.19 0.852 -.0000129 .0000155 | partner_fr#c.col_fr | 0 | -.0216491 .0117221 -1.85 0.068 -.0448919 .0015937 1 | 0 (omitted) | partner_uk#c.col_uk | 0 | .0311397 .0112371 2.77 0.007 .0088585 .0534208 1 | 0 (omitted) | partner_us#c.col_us | 0 | -.0453175 .0155515 -2.91 0.004 -.0761532 -.0144818 1 | 0 (omitted) | partner_econ_id#| c.ln_servicesexp | France | -.1009793 .2092745 -0.48 0.630 -.5159319 .3139733 Germany | -.207759 .1561096 -1.33 0.186 -.5172955 .1017776 Japan | -.2755614 .1402912 -1.96 0.052 -.5537329 .0026101 United Kingdom | .8352024 .433984 1.92 0.057 -.0253078 1.695713 United States | -.1605652 .185467 -0.87 0.389 -.528312 .2071815 | partner_econ_id#| c.ln_servicesimp | France | .6009642 .3221383 1.87 0.065 -.0377766 1.239705 Germany | .2302156 .1748801 1.32 0.191 -.1165393 .5769705 Japan | .2120279 .1970995 1.08 0.285 -.1787841 .6028398 United Kingdom | -1.694077 .4940615 -3.43 0.001 -2.67371 -.7144445 United States | -.0054276 .1892335 -0.03 0.977 -.3806427 .3697875 | partner_econ_id#| c.ln_goodsexp | France | .1951882 .097819 2.00 0.049 .0012312 .3891453 Germany | .0984622 .0580864 1.70 0.093 -.0167125 .2136368 Japan | .0798342 .0472478 1.69 0.094 -.0138493 .1735178 United Kingdom | -.1348263 .2461635 -0.55 0.585 -.6229231 .3532705 United States | .0000854 .0625908 0.00 0.999 -.1240207 .1241915 | partner_econ_id#| c.ln_goodsimp | France | .1697972 .1846939 0.92 0.360 -.1964168 .5360111 Germany | .3880155 .1473953 2.63 0.010 .0957578 .6802732 Japan | .2614983 .1054035 2.48 0.015 .0525025 .470494 United Kingdom | 2.576976 .6400928 4.03 0.000 1.307791 3.846162 United States | .1719541 .1727773 1.00 0.322 -.1706314 .5145395 | partner_econ_id#| c.ln_fdi | France | -.0145596 .1069726 -0.14 0.892 -.2266665 .1975473 Germany | .1115391 .0939308 1.19 0.238 -.0747083 .2977864 Japan | .0547202 .0833109 0.66 0.513 -.11047 .2199104 United Kingdom | -.2255714 .2416279 -0.93 0.353 -.7046748 .2535321 United States | .2981682 .0998416 2.99 0.004 .1002007 .4961356 | partner_econ_id#| c.ln_gdp | France | .2970983 .7400153 0.40 0.689 -1.170215 1.764412 Germany | .3629671 .6773162 0.54 0.593 -.9800258 1.70596 Japan | .6390817 .6335713 1.01 0.315 -.6171731 1.895337 United Kingdom | -.2613469 .9532113 -0.27 0.784 -2.151389 1.628695 United States | .7210528 .7093308 1.02 0.312 -.6854192 2.127525 | partner_econ_id#| c.ln_otheraft | France | -.3257992 .1550674 -2.10 0.038 -.6332691 -.0183292 Germany | -.4180295 .1444829 -2.89 0.005 -.7045124 -.1315466 Japan | -.3335356 .1180767 -2.82 0.006 -.5676599 -.0994112 United Kingdom | .0687922 .3324009 0.21 0.836 -.5902974 .7278818 United States | -.7653098 .162958 -4.70 0.000 -1.088425 -.4421941 | partner_econ_id#| c.ln_oda | France | .5525117 .1661286 3.33 0.001 .2231093 .8819141 Germany | .4890086 .1321145 3.70 0.000 .2270501 .7509672 Japan | .183862 .1384814 1.33 0.187 -.0907211 .4584451 United Kingdom | .0938438 .2027709 0.46 0.644 -.3082134 .495901 United States | .8958777 .2354309 3.81 0.000 .4290618 1.362694 | partner_econ_id#| c.natural_resources | France | .0266695 .0220096 1.21 0.228 -.0169715 .0703105 Germany | .0160756 .0178215 0.90 0.369 -.0192611 .0514123 Japan | .0079434 .0157231 0.51 0.614 -.0232325 .0391194 United Kingdom | -.039139 .1104802 -0.35 0.724 -.2582009 .1799229 United States | .0093805 .0170574 0.55 0.584 -.0244412 .0432021 | _cons | -36.39202 14.46701 -2.52 0.013 -65.07744 -7.706611 -------------------------------------------------------------------------------------- Absorbed degrees of freedom: -----------------------------------------------------------+ Absorbed FE | Categories - Redundant = Num. Coefs | -------------------+---------------------------------------| reporting_econ_id | 106 106 0 *| year | 11 1 10 | -----------------------------------------------------------+ * = FE nested within cluster; treated as redundant for DoF computation
Comment