I'm trying to correct for a three-way bias using ppml_fe_bias, but Stata is returning an error. Does anyone have any suggestions?
Code:
. ppmlhdfe trade fta_other fta_other_lead_2 fta_other_lag_4 fta_other_lag_8 fta_ind fta_ind_lead_2 fta_ind_lag_4 fta_ind_lag_8 INT > L_BRDR_1990-INTL_BRDR_2019, absorb(exp#year imp#year exp#imp) cluster(exp#imp) d (dropped 1265 observations that are either singletons or separated by a fixed effect) warning: dependent variable takes very low values after standardizing (1.9859e-13) note: 2 variables omitted because of collinearity: INTL_BRDR_2018 INTL_BRDR_2019 Iteration 1: deviance = 2.3484e+08 eps = . iters = 10 tol = 1.0e-04 min(eta) = -5.69 P Iteration 2: deviance = 6.3188e+07 eps = 2.72e+00 iters = 9 tol = 1.0e-04 min(eta) = -6.95 Iteration 3: deviance = 2.4915e+07 eps = 1.54e+00 iters = 9 tol = 1.0e-04 min(eta) = -8.81 Iteration 4: deviance = 1.3979e+07 eps = 7.82e-01 iters = 9 tol = 1.0e-04 min(eta) = -10.47 Iteration 5: deviance = 1.0830e+07 eps = 2.91e-01 iters = 8 tol = 1.0e-04 min(eta) = -12.43 Iteration 6: deviance = 9.9258e+06 eps = 9.11e-02 iters = 8 tol = 1.0e-04 min(eta) = -14.56 Iteration 7: deviance = 9.6710e+06 eps = 2.63e-02 iters = 8 tol = 1.0e-04 min(eta) = -16.30 Iteration 8: deviance = 9.6003e+06 eps = 7.37e-03 iters = 6 tol = 1.0e-04 min(eta) = -18.01 Iteration 9: deviance = 9.5810e+06 eps = 2.01e-03 iters = 5 tol = 1.0e-04 min(eta) = -19.56 Iteration 10: deviance = 9.5760e+06 eps = 5.14e-04 iters = 4 tol = 1.0e-04 min(eta) = -20.41 Iteration 11: deviance = 9.5749e+06 eps = 1.21e-04 iters = 3 tol = 1.0e-04 min(eta) = -20.66 Iteration 12: deviance = 9.5746e+06 eps = 2.75e-05 iters = 2 tol = 1.0e-04 min(eta) = -22.10 Iteration 13: deviance = 9.5746e+06 eps = 6.35e-06 iters = 4 tol = 1.0e-05 min(eta) = -23.38 Iteration 14: deviance = 9.5746e+06 eps = 1.47e-06 iters = 6 tol = 1.0e-06 min(eta) = -24.38 S Iteration 15: deviance = 9.5746e+06 eps = 3.25e-07 iters = 4 tol = 1.0e-06 min(eta) = -25.21 S Iteration 16: deviance = 9.5746e+06 eps = 6.54e-08 iters = 5 tol = 1.0e-07 min(eta) = -25.81 S Iteration 17: deviance = 9.5746e+06 eps = 1.27e-08 iters = 7 tol = 1.0e-08 min(eta) = -26.09 S Iteration 18: deviance = 9.5746e+06 eps = 3.04e-09 iters = 7 tol = 1.0e-09 min(eta) = -26.56 S O ------------------------------------------------------------------------------------------------------------ (legend: p: exact partial-out s: exact solver h: step-halving o: epsilon below tolerance) Converged in 18 iterations and 114 HDFE sub-iterations (tol = 1.0e-08) HDFE PPML regression No. of obs = 90,607 Absorbing 3 HDFE groups Residual df = 3,240 Statistics robust to heteroskedasticity Wald chi2(36) = 2173.85 Deviance = 9574551.129 Prob > chi2 = 0.0000 Log pseudolikelihood = -5058372.669 Pseudo R2 = 0.9983 Number of clusters (exp#imp)= 3,241 (Std. err. adjusted for 3,241 clusters in exp#imp) ---------------------------------------------------------------------------------- | Robust trade | Coefficient std. err. z P>|z| [95% conf. interval] -----------------+---------------------------------------------------------------- fta_other | -.0213608 .0300176 -0.71 0.477 -.0801942 .0374727 fta_other_lead_2 | -.0563758 .0280935 -2.01 0.045 -.111438 -.0013136 fta_other_lag_4 | -.0003446 .0293664 -0.01 0.991 -.0579017 .0572124 fta_other_lag_8 | -.0427452 .028236 -1.51 0.130 -.0980868 .0125964 fta_ind | .1328642 .0495224 2.68 0.007 .0358021 .2299263 fta_ind_lead_2 | .1780139 .0712708 2.50 0.012 .0383257 .3177021 fta_ind_lag_4 | .0335462 .0362756 0.92 0.355 -.0375527 .1046452 fta_ind_lag_8 | .0000193 .0639673 0.00 1.000 -.1253544 .1253929 INTL_BRDR_1990 | -.3725335 .046553 -8.00 0.000 -.4637756 -.2812914 INTL_BRDR_1991 | -.2927797 .043997 -6.65 0.000 -.3790123 -.2065471 INTL_BRDR_1992 | -.2812192 .0404477 -6.95 0.000 -.3604953 -.2019431 INTL_BRDR_1993 | -.3143837 .0416806 -7.54 0.000 -.3960762 -.2326912 INTL_BRDR_1994 | -.2053001 .0434917 -4.72 0.000 -.2905422 -.1200579 INTL_BRDR_1995 | -.1645783 .0408916 -4.02 0.000 -.2447244 -.0844322 INTL_BRDR_1996 | -.1396069 .040277 -3.47 0.001 -.2185483 -.0606655 INTL_BRDR_1997 | -.0556948 .038501 -1.45 0.148 -.1311553 .0197657 INTL_BRDR_1998 | .0029684 .0353831 0.08 0.933 -.0663812 .0723181 INTL_BRDR_1999 | .0026243 .0356877 0.07 0.941 -.0673224 .0725709 INTL_BRDR_2000 | .0611137 .0338987 1.80 0.071 -.0053265 .127554 INTL_BRDR_2001 | .0723655 .0315621 2.29 0.022 .0105049 .1342262 INTL_BRDR_2002 | .0657136 .0341782 1.92 0.055 -.0012746 .1327017 INTL_BRDR_2003 | .0472234 .0352788 1.34 0.181 -.0219218 .1163687 INTL_BRDR_2004 | .1105477 .034818 3.18 0.001 .0423057 .1787896 INTL_BRDR_2005 | .1257476 .0333083 3.78 0.000 .0604646 .1910307 INTL_BRDR_2006 | .174981 .0307949 5.68 0.000 .114624 .2353379 INTL_BRDR_2007 | .1439483 .0314064 4.58 0.000 .0823928 .2055038 INTL_BRDR_2008 | .1683745 .0268885 6.26 0.000 .1156741 .2210749 INTL_BRDR_2009 | .0913729 .025577 3.57 0.000 .0412429 .1415029 INTL_BRDR_2010 | .1541567 .022835 6.75 0.000 .1094009 .1989125 INTL_BRDR_2011 | .1699547 .0209745 8.10 0.000 .1288454 .2110639 INTL_BRDR_2012 | .150191 .0177981 8.44 0.000 .1153074 .1850746 INTL_BRDR_2013 | .1398731 .0184009 7.60 0.000 .1038081 .1759382 INTL_BRDR_2014 | .166062 .0168755 9.84 0.000 .1329867 .1991373 INTL_BRDR_2015 | .2129488 .0169653 12.55 0.000 .1796974 .2462002 INTL_BRDR_2016 | .1830368 .0160971 11.37 0.000 .151487 .2145865 INTL_BRDR_2017 | -.0232885 .0069975 -3.33 0.001 -.0370034 -.0095737 INTL_BRDR_2018 | 0 (omitted) INTL_BRDR_2019 | 0 (omitted) _cons | 13.15552 .0107335 1225.66 0.000 13.13448 13.17656 ---------------------------------------------------------------------------------- Absorbed degrees of freedom: -----------------------------------------------------+ Absorbed FE | Categories - Redundant = Num. Coefs | -------------+---------------------------------------| exp#year | 1632 1 1631 | imp#year | 1613 29 1584 | exp#imp | 3241 3241 0 *| -----------------------------------------------------+ * = FE nested within cluster; treated as redundant for DoF computation . . estimates store pre_bias_correct . . * Create conditional mean (lambda) and a matrix of coefficient estimates (beta) . predict lambda (option mu assumed; predicted mean of depvar) (8,503 missing values generated) . matrix beta = e(b) . ppml_fe_bias trade fta_other fta_other_lead_2 fta_other_lag_4 fta_other_lag_8 fta_ind fta_ind_lead_2 fta_ind_lag_4 fta_ind_lag_8 > INTL_BRDR_1990-INTL_BRDR_2019, i(exp) j(imp) t(year) lambda(lambda) beta(beta) performance warning: -by- prefix may be slower than -by()- performance warning: -by- prefix may be slower than -by()- performance warning: -by- prefix may be slower than -by()- note: because of the size of the data, an approximation will be used to compute the adjusted variance. Use the -exact- option if y > ou wish to compute the variance exactly. The set of x variables (fta_other fta_other_lead_2 fta_other_lag_4 fta_other_lag_8 fta_ind fta_ind_lead_2 fta_ind_lag_4 fta_ind_la > g_8 INTL_BRDR_1990 INTL_BRDR_1991 INTL_BRDR_1992 INTL_BRDR_1993 INTL_BRDR_1994 INTL_BRDR_1995 INTL_BRDR_1996 INTL_BRDR_1997 INTL > _BRDR_1998 INTL_BRDR_1999 INTL_BRDR_2000 INTL_BRDR_2001 INTL_BRDR_2002 INTL_BRDR_2003 INTL_BRDR_2004 INTL_BRDR_2005 INTL_BRDR_20 > 06 INTL_BRDR_2007 INTL_BRDR_2008 INTL_BRDR_2009 INTL_BRDR_2010 INTL_BRDR_2011 INTL_BRDR_2012 INTL_BRDR_2013 INTL_BRDR_2014 INTL_ > BRDR_2015 INTL_BRDR_2016 INTL_BRDR_2017 INTL_BRDR_2018 INTL_BRDR_2019) does not appear to be of full rank after conditioning on > the fixed effects. r(111); end of do-file r(111);
Comment