Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Mixlogitwtp model not converging

    Dear Statalisters,

    I am currently analyzing stated choice data from an individualized choice experiment using the user-written commands "mixlogit" and "mixlogitwtp". The data looks like this:

    Code:
    * Example generated by -dataex-. For more info, type help dataex
    clear
    input int(id caseid) byte(Task alt) float(hochpreis_1 hochpreis_2 niedrigpreis_1 niedrigpreis_2) byte preiszonen int(kosten_angezeigt einsparung_angezeigt zusatzkosten_angezeigt) float(choice kosten_neg)
    3 1 1 1 0 0 0 1 3 83 20  6 0 -83
    3 1 1 2 0 1 1 0 3 76 18  6 0 -76
    3 1 1 3 1 0 0 0 9 55 20 11 1 -55
    3 2 2 1 0 1 0 1 9 83 14 23 0 -83
    3 2 2 2 1 0 0 0 3 69 20  6 1 -69
    3 2 2 3 1 0 0 1 3 55 20 17 0 -55
    end
    The model in preference space runs fine and yields the following results:

    Code:
    mixlogit choice kosten_angezeigt , rand(hochpreis_1 hochpreis_2 niedrigpreis_1 niedrigpreis_2 preiszonen einsparung_angezeigt zusatzkosten_angezeigt) group(caseid) id(id) nrep(1000) robust
    
    Iteration 0:  Log likelihood = -6137.1659  (not concave)
    Iteration 1:  Log likelihood = -6035.0273  
    Iteration 2:  Log likelihood = -6015.9366  
    Iteration 3:  Log likelihood = -6015.7484  
    Iteration 4:  Log likelihood = -6015.7483  
    
    Mixed logit model                                       Number of obs = 18,108
                                                            Wald chi2(8)  = 247.86
    Log likelihood = -6015.7483                             Prob > chi2   = 0.0000
    
    ----------------------------------------------------------------------------------------
                           |               Robust
                    choice | Coefficient  std. err.      z    P>|z|     [95% conf. interval]
    -----------------------+----------------------------------------------------------------
    Mean                   |
          kosten_angezeigt |  -.0576894   .0039003   -14.79   0.000    -.0653339   -.0500449
               hochpreis_1 |   .0441881   .0618708     0.71   0.475    -.0770764    .1654527
               hochpreis_2 |   .0022187   .0612087     0.04   0.971    -.1177482    .1221856
            niedrigpreis_1 |  -.0416261   .0484117    -0.86   0.390    -.1365112     .053259
            niedrigpreis_2 |  -.0079596    .051074    -0.16   0.876    -.1080628    .0921435
                preiszonen |  -.0388723    .008607    -4.52   0.000    -.0557417    -.022003
      einsparung_angezeigt |   -.013317   .0079175    -1.68   0.093    -.0288349     .002201
    zusatzkosten_angezeigt |  -.0473624   .0047258   -10.02   0.000    -.0566249   -.0380999
    -----------------------+----------------------------------------------------------------
    SD                     |
               hochpreis_1 |   .8914174   .0783303    11.38   0.000     .7378929    1.044942
               hochpreis_2 |   .7835104   .0913115     8.58   0.000     .6045431    .9624777
            niedrigpreis_1 |   .3474652   .1461157     2.38   0.017     .0610837    .6338467
            niedrigpreis_2 |    .679681   .0840821     8.08   0.000     .5148831    .8444788
                preiszonen |   .1067137   .0167954     6.35   0.000     .0737953    .1396321
      einsparung_angezeigt |   .0703171   .0149687     4.70   0.000      .040979    .0996552
    zusatzkosten_angezeigt |    .063285   .0069402     9.12   0.000     .0496825    .0768875
    ----------------------------------------------------------------------------------------
    The sign of the estimated standard deviations is irrelevant: interpret them as
    being positive
    Sadly, this simple WTP space model does not converge:

    Code:
    mixlogitwtp choice , price(kosten_neg) rand(hochpreis_1 hochpreis_2 niedrigpreis_1 niedrigpreis_2 preiszonen einsparung_angezeigt zusatzkosten_angezeigt) group(caseid) id(id) nrep(1000) vce(robust)
    We tried the following things each on their own and in combinations (mostly taken from this Statalist post: https://www.statalist.org/forums/for...vergence-issue), but nothing seems to work:
    • Lower/higher nrep() values
    • Used the burn() option
    • Tried random starting values
    • Used the wtp values obtained from the preference space model as starting values
    • Used all the available options for technique()
    • Used the "difficult" option
    • Used "xlogit" in Python and "logitr" in R, both did not converge either using various options
    I am looking forward to any tips and comments regarding this non-convergence issue.
    Thank you!

  • #2
    Hi Paul, did you finally solve the problem? I also have the same. I wonder if it's a problem in the halton draws

    Comment

    Working...
    X