Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Concentration index decomposition

    Dear users I want to estimate the concentration index using equation 1 with wagstaff 2005 bounds. Then, with probit regression specification, I want to decompose the contribution of each predictor xrank and others. example data is given below.

    \[ C = \frac{2}{n \cdot \bar{y}} \sum_{i=1}^{n} y_i R_i - 1 \] (eq-1)

    Part -1 is done and result is given below.

    My query is how to implement Part-2?


    \[ CI_n = \left( \frac{\beta_{\text{rank}} X_{\text{rank}}}{\bar{Y}} \right) CI_r + \sum_k \left( \frac{\beta_k X_k}{\bar{Y}} \right) CI_k + \frac{GC \epsilon}{\bar{Y}} \] (eq-2)

    I am using conindex (version *! conindex 1.5 18 July 2018) syntax and Stata version 15.1

    Code:
    * Example generated by -dataex-. To install: ssc install dataex
    clear
    input byte y float xrank byte(xk1 xk2 xk3) float xk5
    1  677.8285 0 0 0 146.51355
    1 175.72597 1 1 0  578.2192
    0 245.46584 1 0 0  586.5716
    1  908.6988 1 0 1  673.6869
    0  645.7861 1 1 1  753.4822
    1 108.27734 1 0 0  978.2668
    0  191.3244 1 1 1  564.6703
    1  697.1516 1 1 1  390.6608
    0 104.55543 1 1 1  815.6676
    1 244.72725 0 0 1   343.749
    0  593.8604 1 0 1  495.0743
    0  722.7057 0 0 0 170.61075
    1  686.7651 1 0 1 122.81567
    0 301.84238 1 0 0  966.3835
    1  740.9613 0 0 0  852.3821
    0  313.5242 1 0 1  726.3768
    1  392.8597 0 1 0 468.05765
    1  771.8423 1 0 0  255.9649
    1  684.6696 1 1 0 240.79333
    0  864.3011 0 0 1  325.2186
    1  691.8516 1 0 1   594.304
    0  611.4777 0 0 0  743.1364
    1  184.3073 1 1 1  694.1776
    1  430.9442 0 1 1  351.9405
    1  338.6821 0 1 1  959.3787
    1  319.5907 1 1 1  764.1072
    1  975.7095 1 0 0 598.91864
    1   453.788 0 1 0  650.5486
    1  902.8419 1 0 1    477.64
    1  668.0248 1 0 1  322.9579
    0  815.3302 1 1 0  420.3754
    0  552.3734 0 1 0  782.0615
    1  619.2135 0 1 1 112.95414
    1  543.2659 0 1 0  204.4654
    1  275.7187 0 1 1 141.40237
    0  750.2069 0 1 1 136.65593
    1  352.6951 0 1 0  869.9146
    0 121.88437 0 1 0  733.2921
    0   680.925 0 0 1  526.7565
    1  259.3996 0 1 1 188.05075
    0  946.4127 1 1 0  542.4543
    0  958.5357 0 0 1  526.1246
    1  923.3779 1 1 0  255.8817
    1  433.1428 1 0 1  490.4665
    1 113.91096 1 0 0  458.6543
    1  935.4867 0 1 0  654.2651
    1  485.3657 0 0 0  671.5843
    0  969.9893 0 0 1  140.7736
    1   967.258 0 0 1  437.1514
    1  867.7085 1 0 0  663.2739
    0   365.004 0 1 1 552.82263
    1 446.58795 0 0 0  870.8409
    0   866.023 0 1 0  692.8243
    1  385.2298 0 0 1   246.641
    0 252.54347 0 0 1 163.51187
    1 601.12115 1 0 0  678.1774
    1  942.5393 0 0 1 123.86018
    0  726.4268 1 1 1   627.198
    0  613.0551 0 1 0  946.2072
    1 187.45885 1 0 0  617.9268
    0  653.5065 0 0 1  449.3529
    0  991.0485 0 1 0  678.9594
    1  226.0756 1 0 0  512.4276
    0  566.4967 1 0 1  591.0551
    0  889.6357 1 0 0  947.3183
    1  766.6918 0 1 0  447.4924
    1  727.3141 1 1 1  965.0715
    0  732.2357 0 1 1  914.8156
    1   423.542 0 0 0 276.21204
    1  364.2327 1 0 0 162.42517
    1   828.425 1 1 1  190.7002
    1  829.1021 0 1 1 116.39964
    0  880.3651 0 1 1 184.99866
    1  921.9165 1 1 1  714.7061
    0  560.2081 1 0 0  164.0698
    1  551.3647 1 1 1  387.0781
    1  818.4656 0 0 1  860.3878
    1  684.9675 0 1 0 120.94474
    0  731.7702 0 0 1  833.0216
    1  816.2134 0 1 0  353.6693
    0  901.0048 0 1 1 206.34834
    1 404.19565 0 1 1  727.0635
    0  438.0247 1 1 1  666.0486
    1 184.58374 0 0 0  889.7248
    0  620.4521 0 1 0   761.564
    0 132.34805 0 0 1  823.1328
    1  519.0382 1 0 0  353.8311
    0  588.3802 0 0 0  259.6956
    1  357.8871 0 0 0  775.5533
    1  631.7499 1 1 0  826.1512
    1 127.45023 0 0 0  991.4547
    1 133.61337 0 0 0  471.3559
    1  840.3405 0 0 1  434.8163
    1  424.1716 0 1 1  798.7717
    1 214.35446 0 1 0  406.7232
    1  570.0189 1 1 1  937.6816
    1  792.9942 1 1 1  872.5715
    1 294.23892 1 0 1  486.0946
    1  660.6014 0 0 1  775.7839
    0  176.8127 0 1 0  779.0886
    end
    label var y "outcome dummy"
    label var xrank "rank continuous"
    label var xk1 "xk1 dummy"
    label var xk2 "xk2 dummy"
    label var xk3 "xk3 dummy"
    label var xk5 "xk5 continuous"

    Code:
     . conindex y , rankvar( xrank ) limits(0 1) bounded wagstaff
    
    
    ------------------------------------------------------------------------------+
    Index:             | No. of obs. | Index value | Std. error        | p-value  |
    -------------------+-------------+-------------+-------------------+----------|
    Wagstaff norm. CI  | 100         | -.0999571   |.12036793          |  0.4083  |
    ------------------------------------------------------------------------------+
    Last edited by Mukesh Punia; 23 Sep 2024, 08:49.
    Best regards,
    Mukesh

    (Stata 15.1 SE)

  • #2
    Respected Stephen Jenkins can you please have a look at it.
    Best regards,
    Mukesh

    (Stata 15.1 SE)

    Comment


    • #3
      Respected George Ford can you please have a look at it?
      Best regards,
      Mukesh

      (Stata 15.1 SE)

      Comment


      • #4
        Outside of my area, but maybe some help here.

        HTML Code:
        https://www.statalist.org/forums/forum/general-stata-discussion/general/1373417-decomposing-erreygers-concentration-index-stata

        Comment

        Working...
        X