I have the following survey data set:
Now I want to merge the following data set to the above one:
The initial dataset presents the day, month, and year of the interview for each individual ID where the interviews occurred. I have formulated a variable to capture the date of each interview. In a separate dataset, I possess the total count of COVID-19 cases reported within the last 30 days, corresponding to each updated date. My objective is to align the interview dates from the first dataset with the update dates from the second dataset. This alignment will allow me to determine the number of COVID-19 cases reported in the vicinity of 30 days surrounding each interview date for every ID. The matching does not need to precisely cover a 30-day span but should be as close as feasibly possible.
I used the following codes:
Do you think it is the correct approach?
Thank you!
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float(YEAR MONTHOFINTERVIEW DAYOFINTERVIEW) str8 ID float State 2013 . . "10.34" 37 2015 10 17 "10.34" 37 2017 12 11 "10.34" 37 2013 . . "10.35" 37 2016 1 27 "10.35" 37 2017 11 6 "10.35" 37 2019 12 12 "10.35" 37 2013 . . "1000.33" 53 2013 . . "1000.34" 53 2015 9 28 "1000.34" 53 2014 . . "1000.35" 53 2015 9 16 "1000.35" 50 2017 10 17 "1000.35" 53 2013 . . "1013.31" 42 2015 9 12 "1013.31" 42 2017 10 18 "1013.31" 42 2015 10 24 "1014.32" 34 2020 3 2 "1014.32" 34 2017 12 3 "1014.33" 34 2020 2 17 "1014.33" 34 2020 2 17 "1014.34" 34 2016 1 30 "1033.31" 13 2018 2 27 "1033.31" 1 2020 5 5 "1033.31" 1 2022 3 18 "1033.32" 1 2020 5 8 "1034.31" 1 2020 6 1 "1034.32" 1 2020 2 24 "1036.32" 37 2019 12 4 "1036.33" 45 2021 11 24 "1036.34" 45 2021 11 13 "1036.35" 45 2014 . . "1037.36" 51 2016 4 25 "1037.36" 51 2015 10 20 "1037.37" 51 2013 . . "1038.32" 26 2015 10 28 "1038.32" 12 2015 9 21 "1038.33" 26 2017 10 13 "1038.33" 37 2019 11 21 "1038.33" 13 2017 10 17 "1038.34" 26 2019 11 19 "1038.34" 26 2018 3 15 "1043.178" 26 2018 2 20 "1043.179" 26 2022 1 17 "1043.179" 26 2013 . . "1043.34" 53 2013 . . "1043.35" 26 2013 . . "1043.36" 13 2013 . . "1043.37" 26 2015 11 17 "1043.37" 26 2018 1 5 "1043.37" 26 2015 11 23 "1043.38" 26 2018 4 26 "1043.38" 26 2019 11 18 "1043.38" 26 2021 10 12 "1043.39" 26 2013 . . "1045.31" 26 2013 . . "1047.32" 6 2015 9 14 "1047.32" 6 2017 10 24 "1047.32" 6 2018 4 21 "1047.33" 6 2019 12 5 "1047.34" 6 2013 . . "1048.185" 40 2014 . . "1048.195" 40 2018 3 9 "1048.195" 40 2018 6 13 "1048.203" 40 2020 4 9 "1048.203" 40 2017 11 19 "1048.247" 40 2020 7 16 "1048.247" 40 2018 2 26 "1048.36" 40 2016 1 8 "1048.37" 40 2018 6 17 "1048.37" 40 2022 3 21 "1048.41" 40 2021 10 4 "1048.42" 45 2022 3 17 "1048.47" 40 2014 . . "105.35" 21 2018 5 13 "105.37" 21 2019 11 22 "105.37" 21 2017 11 28 "105.38" 21 2019 11 17 "105.38" 21 2017 11 12 "105.39" 21 2019 11 20 "105.39" 21 2018 1 24 "105.40" 21 2017 10 9 "105.41" 21 2019 11 17 "105.41" 21 2019 12 16 "105.42" 21 2013 . . "1051.42" 41 2015 10 11 "1051.42" 41 2017 12 13 "1051.42" 41 2020 7 20 "1051.42" 41 2015 11 14 "1051.44" 41 2015 11 7 "1051.45" 41 2019 11 27 "1051.48" 41 2022 2 10 "1055.183" 40 2013 . . "1055.30" 40 2015 9 29 "1055.30" 40 2017 11 12 "1055.31" 40 2016 3 7 "1055.32" 5 2019 12 2 "1055.32" 5 2019 12 9 "106.182" 21 2020 2 16 "106.185" 39 2013 . . "106.31" 21 end label values MONTHOFINTERVIEW TA210009L label def TA210009L 1 "January", modify label def TA210009L 2 "February", modify label def TA210009L 3 "March", modify label def TA210009L 4 "April", modify label def TA210009L 5 "May", modify label def TA210009L 6 "June", modify label def TA210009L 7 "July", modify label def TA210009L 9 "September", modify label def TA210009L 10 "October", modify label def TA210009L 11 "November", modify label def TA210009L 12 "December", modify label values DAYOFTASINTERVIEW TA210010L label def TA210010L 1 "Actual day", modify label def TA210010L 2 "Actual day", modify label def TA210010L 3 "Actual day", modify label def TA210010L 4 "Actual day", modify label def TA210010L 5 "Actual day", modify label def TA210010L 6 "Actual day", modify label def TA210010L 7 "Actual day", modify label def TA210010L 8 "Actual day", modify label def TA210010L 9 "Actual day", modify label def TA210010L 10 "Actual day", modify label def TA210010L 11 "Actual day", modify label def TA210010L 12 "Actual day", modify label def TA210010L 13 "Actual day", modify label def TA210010L 14 "Actual day", modify label def TA210010L 15 "Actual day", modify label def TA210010L 16 "Actual day", modify label def TA210010L 17 "Actual day", modify label def TA210010L 18 "Actual day", modify label def TA210010L 19 "Actual day", modify label def TA210010L 20 "Actual day", modify label def TA210010L 21 "Actual day", modify label def TA210010L 22 "Actual day", modify label def TA210010L 23 "Actual day", modify label def TA210010L 24 "Actual day", modify label def TA210010L 25 "Actual day", modify label def TA210010L 26 "Actual day", modify label def TA210010L 27 "Actual day", modify label def TA210010L 28 "Actual day", modify label def TA210010L 29 "Actual day", modify label def TA210010L 30 "Actual day", modify
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float State double(Covid_cases COVID_deaths) float DATE_Updated 1 0 0 21937 1 0 0 21944 1 0 0 21951 1 0 0 21958 1 0 0 21965 1 0 0 21972 1 0 0 21979 1 3 0 21986 1 61 0 21993 1 472 1 22000 1 1175 26 22007 1 2611 65 22014 1 4246 110 22021 1 5220 192 22028 1 5804 229 22035 1 6155 276 22042 1 6515 338 22049 1 7494 329 22056 1 9284 328 22063 1 10185 309 22070 1 11837 294 22077 1 14755 265 22084 1 16615 303 22091 1 20693 324 22098 1 25490 316 22105 1 32253 423 22112 1 39716 478 22119 1 45005 565 22126 1 47174 636 22133 1 44025 669 22140 1 39102 578 22147 1 35252 504 22154 1 32917 517 22161 1 29842 402 22168 1 28727 444 22175 1 26993 422 22182 1 26532 319 22189 1 27024 321 22196 1 28197 320 22203 1 29708 361 22210 1 34003 379 22217 1 37842 401 22224 1 40017 492 22231 1 46883 517 22238 1 50543 619 22245 1 57901 705 22252 1 71550 784 22259 1 82152 853 22266 1 95251 1057 22273 1 99992 1066 22280 1 103998 1005 22287 1 105356 1556 22294 1 95086 1696 22301 1 92267 2395 22308 1 80876 3214 22315 1 65019 3136 22322 1 53522 3066 22329 1 41078 2572 22336 1 32083 1825 22343 1 25385 1331 22350 1 26288 1013 22357 1 22504 740 22364 1 18209 521 22371 1 16048 431 22378 1 11294 365 22385 1 11636 318 22392 1 11732 329 22399 1 12011 278 22406 1 10989 268 22413 1 16585 241 22420 1 15743 256 22427 1 15129 233 22434 1 15081 248 22441 1 7415 240 22448 1 6568 186 22455 1 6391 189 22462 1 6082 145 22469 1 8308 146 22476 1 14548 141 22483 1 26484 158 22490 1 42905 174 22497 1 63139 263 22504 1 81907 413 22511 1 88190 492 22518 1 108604 732 22525 1 112402 798 22532 1 112042 912 22539 1 112896 1665 22546 1 90353 1908 22553 1 72097 2125 22560 1 52607 2195 22567 1 37449 1643 22574 1 33870 1232 22581 1 29230 1056 22588 1 26839 931 22595 1 24936 712 22602 1 15563 667 22609 1 12825 472 22616 1 12759 291 22623 1 13950 283 22630 end format %tdNN/DD/CCYY DATE_Updated
I used the following codes:
Code:
gen DATEOFINTERVIEW = mdy(MONTHOFINTERVIEW, DAYOFINTERVIEW, YEAR) * Format the new date variable format DATEOFINTERVIEW %tdNN/DD/CCYY ** Merge the datasets by state joinby STATE using "second data.dta" * Calculate the difference between interview date and covid date gen date_diff = abs(DATEOFINTERVIEW - DATE_Updated) * Sort by state, person_id, and date_diff to find the closest date bysort STATE ID (date_diff): keep if _n == 1 drop date_diff
Thank you!
Comment