I have survey data I want to analyze where the DV 'count_selectoptionsh' is a non-negative discrete count variable (representing the count of high value options selected by participants). The IV is just 'treatment' that can take values 1, 2 and 3 where 1 is the control group. This is what the raw data looks like:
I have used poisson to estimate the model such as:
Using the nolog option, I get:
Now, I know without the 'nolog' option, the coefficient is the difference in log count between treatment and control. However, in terms of interpreting it as increase in count, I find it difficult. The only thing I can say is treatment increases the count of high value options selected in the positive direction. significantly. However I do want to say 'by how much'.
Is using the 'nolog' option the solution to this? Does this give me OLS like coefficients?
Please let me know, thank you!
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float count_selectoptionsh byte treatment 1 2 0 1 5 2 0 1 3 1 4 3 2 3 5 2 1 3 1 2 2 1 0 1 1 2 4 3 0 1 4 2 1 1 0 1 4 2 3 1 2 1 0 1 1 2 2 3 0 1 1 2 3 1 2 1 1 2 0 1 1 1 2 1 3 1 1 2 2 3 2 1 2 3 1 1 5 1 3 3 3 2 4 3 7 1 2 1 0 1 2 1 4 2 3 1 4 2 0 3 2 2 1 1 1 3 0 1 1 3 0 2 4 2 3 2 3 3 2 2 2 3 1 3 1 1 5 3 7 2 1 2 2 2 1 3 2 2 2 1 4 2 2 2 2 1 2 2 3 1 0 2 1 3 1 1 1 3 4 2 2 3 1 1 1 1 3 3 1 3 4 2 2 2 3 3 0 3 0 1 1 1 1 3 1 3 2 2 2 3 4 1 7 2 5 3 1 3 2 3 end
Code:
poisson count_selectoptionsh b1.treatment, vce(robust) Iteration 0: Log pseudolikelihood = -822.25021 Iteration 1: Log pseudolikelihood = -822.25021 Poisson regression Number of obs = 507 Wald chi2(2) = 11.77 Prob > chi2 = 0.0028 Log pseudolikelihood = -822.25021 Pseudo R2 = 0.0077 -------------------------------------------------------------------------------------- | Robust count_selectoptionsh | Coefficient std. err. z P>|z| [95% conf. interval] ---------------------+---------------------------------------------------------------- treatment | 2 | .2800994 .0860088 3.26 0.001 .1115253 .4486736 3 | .0855078 .0846385 1.01 0.312 -.0803807 .2513963 | _cons | .4458376 .064994 6.86 0.000 .3184518 .5732234 --------------------------------------------------------------------------------------
Code:
poisson count_selectoptionsh b1.treatment, vce(robust) nolog Poisson regression Number of obs = 507 Wald chi2(2) = 11.77 Prob > chi2 = 0.0028 Log pseudolikelihood = -822.25021 Pseudo R2 = 0.0077 -------------------------------------------------------------------------------------- | Robust count_selectoptionsh | Coefficient std. err. z P>|z| [95% conf. interval] ---------------------+---------------------------------------------------------------- treatment | 2 | .2800994 .0860088 3.26 0.001 .1115253 .4486736 3 | .0855078 .0846385 1.01 0.312 -.0803807 .2513963 | _cons | .4458376 .064994 6.86 0.000 .3184518 .5732234 ----------------------------------------------------------------------------------
Is using the 'nolog' option the solution to this? Does this give me OLS like coefficients?
Please let me know, thank you!
Comment