Dear Statalist,
Currently, I am researching the impact of branding on the return of capital employed (ROCE). I suspect a dynamic nature in my unbalanced panel data and an endogeneity issue in the branding variable. Therefore, I use a two-step system GMM for my analysis. I used the xtdpdgmm command to run my regression, and the post-estimation result showed two different Hansen test results that confused me. The number of moment conditions from my regression result is 98, and I suspect this number also indicates the number of instruments used. This number is still below the number of banks in my dataset, which is 114 banks. The Hansen test result for 2-step moment functions with 2-step weighting matrix is insignificant. However, if I use the Hansen test result with 3-step weighting matrix, it is significant.
Can anyone please enlighten me on the difference between the 2-step and 3-step weighting matrix from the xtdpdgmm post-estimation result? Also, for my case here, should I rely on the result from the 2-step or 3-step weighting matrix, or should I rely simultaneously on both of them?
Sincerely,
Abraham
Currently, I am researching the impact of branding on the return of capital employed (ROCE). I suspect a dynamic nature in my unbalanced panel data and an endogeneity issue in the branding variable. Therefore, I use a two-step system GMM for my analysis. I used the xtdpdgmm command to run my regression, and the post-estimation result showed two different Hansen test results that confused me. The number of moment conditions from my regression result is 98, and I suspect this number also indicates the number of instruments used. This number is still below the number of banks in my dataset, which is 114 banks. The Hansen test result for 2-step moment functions with 2-step weighting matrix is insignificant. However, if I use the Hansen test result with 3-step weighting matrix, it is significant.
Can anyone please enlighten me on the difference between the 2-step and 3-step weighting matrix from the xtdpdgmm post-estimation result? Also, for my case here, should I rely on the result from the 2-step or 3-step weighting matrix, or should I rely simultaneously on both of them?
Code:
. xtdpdgmm ROCE L_ROCE $control, gmm(L_ROCE, lag(2 3)) gmm(DB_Branding, lag(1 2)) two vce(r) teffect note: 254.Date omitted because of collinearity. Generalized method of moments estimation Fitting full model: Step 1 f(b) = 77.04881 Step 2 f(b) = .53330455 Group variable: Sandi Number of obs = 2615 Time variable: Date Number of groups = 114 Moment conditions: linear = 98 Obs per group: min = 4 nonlinear = 0 avg = 22.9386 total = 98 max = 24 (Std. err. adjusted for 114 clusters in Sandi) ------------------------------------------------------------------------------ | WC-Robust ROCE | Coefficient std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- L_ROCE | .4208216 .1976822 2.13 0.033 .0333715 .8082716 DB_Branding | -11.13101 3.905712 -2.85 0.004 -18.78607 -3.475956 Size | -.0309021 1.78705 -0.02 0.986 -3.533456 3.471651 CAR | -.0035476 .0093652 -0.38 0.705 -.0219029 .0148078 NPL | -2.08351 .8617056 -2.42 0.016 -3.772422 -.3945978 LDR | -.0022799 .0265356 -0.09 0.932 -.0542888 .0497289 NIM | 1.385492 .510181 2.72 0.007 .385556 2.385429 Business_Mix | -.1251238 .1944438 -0.64 0.520 -.5062266 .255979 Inflation | 2.219998 .9313944 2.38 0.017 .3944988 4.045498 GDP_Growth | -.2106766 .1346259 -1.56 0.118 -.4745386 .0531854 | Date | 233 | -1.350172 .9389638 -1.44 0.150 -3.190508 .4901628 234 | -.4392329 1.004881 -0.44 0.662 -2.408763 1.530297 235 | -2.500202 1.082535 -2.31 0.021 -4.621932 -.3784727 236 | .2346466 1.073901 0.22 0.827 -1.87016 2.339453 237 | -2.125878 1.044461 -2.04 0.042 -4.172983 -.0787731 238 | -1.862617 .8534568 -2.18 0.029 -3.535361 -.1898722 239 | -.9545664 .5586313 -1.71 0.087 -2.049464 .1403309 240 | .1372608 1.360941 0.10 0.920 -2.530135 2.804657 241 | 0 (empty) 242 | 1.213023 .6496135 1.87 0.062 -.0601956 2.486243 243 | .3086538 .7763399 0.40 0.691 -1.212944 1.830252 244 | 2.849401 .9740243 2.93 0.003 .940348 4.758453 245 | 3.97898 1.916145 2.08 0.038 .2234046 7.734556 246 | 2.64422 .9373806 2.82 0.005 .8069881 4.481453 247 | 1.275293 1.017346 1.25 0.210 -.7186695 3.269255 248 | 1.940281 .9799561 1.98 0.048 .0196022 3.860959 249 | -3.595698 1.815245 -1.98 0.048 -7.153512 -.0378827 250 | -7.201618 3.259837 -2.21 0.027 -13.59078 -.8124556 251 | -7.300011 2.911381 -2.51 0.012 -13.00621 -1.593809 252 | -4.884409 2.438686 -2.00 0.045 -9.664147 -.1046724 253 | -2.552789 1.104793 -2.31 0.021 -4.718143 -.3874359 254 | 0 (empty) 255 | -1.380236 .455906 -3.03 0.002 -2.273795 -.4866764 | _cons | .8589907 20.95298 0.04 0.967 -40.2081 41.92608 ------------------------------------------------------------------------------ Instruments corresponding to the linear moment conditions: 1, model(level): 234:L2.L_ROCE 235:L2.L_ROCE 236:L2.L_ROCE 237:L2.L_ROCE 238:L2.L_ROCE 239:L2.L_ROCE 240:L2.L_ROCE 241:L2.L_ROCE 242:L2.L_ROCE 243:L2.L_ROCE 244:L2.L_ROCE 245:L2.L_ROCE 246:L2.L_ROCE 247:L2.L_ROCE 248:L2.L_ROCE 249:L2.L_ROCE 250:L2.L_ROCE 251:L2.L_ROCE 252:L2.L_ROCE 253:L2.L_ROCE 254:L2.L_ROCE 255:L2.L_ROCE 235:L3.L_ROCE 236:L3.L_ROCE 237:L3.L_ROCE 238:L3.L_ROCE 239:L3.L_ROCE 240:L3.L_ROCE 241:L3.L_ROCE 242:L3.L_ROCE 243:L3.L_ROCE 244:L3.L_ROCE 245:L3.L_ROCE 246:L3.L_ROCE 247:L3.L_ROCE 248:L3.L_ROCE 249:L3.L_ROCE 250:L3.L_ROCE 251:L3.L_ROCE 252:L3.L_ROCE 253:L3.L_ROCE 254:L3.L_ROCE 255:L3.L_ROCE 2, model(level): 233:L1.DB_Branding 234:L1.DB_Branding 235:L1.DB_Branding 236:L1.DB_Branding 237:L1.DB_Branding 238:L1.DB_Branding 239:L1.DB_Branding 240:L1.DB_Branding 241:L1.DB_Branding 242:L1.DB_Branding 243:L1.DB_Branding 244:L1.DB_Branding 245:L1.DB_Branding 246:L1.DB_Branding 247:L1.DB_Branding 248:L1.DB_Branding 249:L1.DB_Branding 250:L1.DB_Branding 251:L1.DB_Branding 252:L1.DB_Branding 253:L1.DB_Branding 254:L1.DB_Branding 255:L1.DB_Branding 242:L2.DB_Branding 243:L2.DB_Branding 245:L2.DB_Branding 246:L2.DB_Branding 247:L2.DB_Branding 248:L2.DB_Branding 253:L2.DB_Branding 254:L2.DB_Branding 3, model(level): 233bn.Date 234.Date 235.Date 236.Date 237.Date 238.Date 239.Date 240.Date 241.Date 242.Date 243.Date 244.Date 245.Date 246.Date 247.Date 248.Date 249.Date 250.Date 251.Date 252.Date 253.Date 254.Date 255.Date 4, model(level): _cons . estat overid Sargan-Hansen test of the overidentifying restrictions H0: overidentifying restrictions are valid 2-step moment functions, 2-step weighting matrix chi2(66) = 60.7967 Prob > chi2 = 0.6580 2-step moment functions, 3-step weighting matrix chi2(66) = 94.3566 Prob > chi2 = 0.0126 . estat serial Arellano-Bond test for autocorrelation of the first-differenced residuals H0: no autocorrelation of order 1 z = -3.2123 Prob > |z| = 0.0013 H0: no autocorrelation of order 2 z = -0.1084 Prob > |z| = 0.9137
Abraham
Comment