Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Joint Hypothesis Testing

    Hi everyone,

    My objetive is to test if two joint variables are less than zero ( one sided test - dividing the p-value by two). To this end after estimating the model (panel GMM) I run two codes:

    HTML Code:
     test _b[x1] + _b[x2]=0
    and

    HTML Code:
     test x1 x2
    the results are different, what test should I use?

  • #2
    Nuno:
    I would probably consider -lincom- that, in the following toy-example, overlaps with -test-:
    Code:
    . use "C:\Program Files\Stata18\ado\base\a\auto.dta"
    (1978 automobile data)
    
    . regress price i.rep78
    
          Source |       SS           df       MS      Number of obs   =        69
    -------------+----------------------------------   F(4, 64)        =      0.24
           Model |  8360542.63         4  2090135.66   Prob > F        =    0.9174
        Residual |   568436416        64     8881819   R-squared       =    0.0145
    -------------+----------------------------------   Adj R-squared   =   -0.0471
           Total |   576796959        68  8482308.22   Root MSE        =    2980.2
    
    ------------------------------------------------------------------------------
           price | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
    -------------+----------------------------------------------------------------
           rep78 |
              2  |   1403.125   2356.085     0.60   0.554    -3303.696    6109.946
              3  |   1864.733   2176.458     0.86   0.395    -2483.242    6212.708
              4  |       1507   2221.338     0.68   0.500    -2930.633    5944.633
              5  |     1348.5   2290.927     0.59   0.558    -3228.153    5925.153
                 |
           _cons |     4564.5   2107.347     2.17   0.034     354.5913    8774.409
    ------------------------------------------------------------------------------
    
    . mat list e(b)
    
    e(b)[1,6]
               1b.         2.         3.         4.         5.           
            rep78      rep78      rep78      rep78      rep78      _cons
    y1          0   1403.125  1864.7333       1507     1348.5     4564.5
    
    
    . test 1b.rep78 2.rep78
    
     ( 1)  1b.rep78 = 0
     ( 2)  2.rep78 = 0
           Constraint 1 dropped
    
           F(  1,    64) =    0.35
                Prob > F =    0.5536
    
    
    . lincom 1b.rep78 + 2.rep78
    
     ( 1)  1b.rep78 + 2.rep78 = 0
    
    ------------------------------------------------------------------------------
           price | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
    -------------+----------------------------------------------------------------
             (1) |   1403.125   2356.085     0.60   0.554    -3303.696    6109.946
    ------------------------------------------------------------------------------
    
    . test 1b.rep78 2.rep78
    
     ( 1)  1b.rep78 = 0
     ( 2)  2.rep78 = 0
           Constraint 1 dropped
    
           F(  1,    64) =    0.35
                Prob > F =    0.5536
    
    .
    Kind regards,
    Carlo
    (StataNow 18.5)

    Comment

    Working...
    X