Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • ivmediate - mediator explains always the same % of the total effect

    I am using Stata 14, and the command ivmediate.

    This command is first used in: Dippel, C., Gold, R., Heblich, S., & Pinto, R. (2022). The effect of trade on workers and voters. The Economic Journal, 132(641), 199-217.

    And it was first elaborated in: Dippel, C., Gold, R., Heblich, S., & Pinto, R. (2017). Instrumental variables and causal mechanisms: Unpacking the effect of trade on workers and voters (No. w23209). National Bureau of Economic Research.

    This is what I am running:

    ivmediate Y X1 X2 X3 X4, mediator(M) treatment(T) instrument(Z) vce(cluster X5) full

    One of the outputs (and perhaps the most important one) is the % of the total effect of T on Y that passes through M.

    Below is an extract of the dataset, followed by two examples.

    I have two problems, and I cannot find their solution or at least their explanation.
    1. regardless of the mediator that I use, the result is always 0.38%
    2. this percentage is far from what I compute by "hand" (as explained in Section 3.2 of Dippel et al. (2022), the estimated indirect effect and the effect calculated effect should be the same, besides from rounding)
    Is anybody facing the same issue? Can anybody explain the reason for my two issues? Any error in my code? (I am replacing the actual name of the values, besides that, the code is the same)

    cross posting from stackoverflow and crossvalidated

    Code:
    * Donwload packages you need
    search ivmediate
    h ivmediate

    Code:
    * Example generated by -dataex-. To install: ssc install dataex
    clear
    input float(smokeW ever_drunk centered_age) byte sex float both_parents byte(FAS1_D2 FAS1_D3) float(monthbirth2 wave) long countryno float(RAE_M class_zed)
    . .   -2.45341 1 1 0 1  0 2018  40000  4  1903
    . . -2.2034097 2 1 0 1 11 2018  40000  3  1995
    0 0  -.7867431 1 1 0 0  0 2001  40000  4  2607
    0 0  -1.036743 2 . 0 0  3 2001  40000  7  2633
    0 0  1.5465902 2 1 0 1  1 2010  56001  1  4763
    . . -2.2867432 1 1 0 1  1 2018  56002  1  5712
    0 0 -1.8700764 2 1 0 0  8 2010  56002  8  5824
    0 0  1.5465902 2 1 0 1  3 2006  56002  3  6647
    0 0   .5465902 2 1 0 1  3 2010  56002  3  6741
    0 0 -2.1200764 2 0 0 0 11 2001  56002 11  8155
    0 0   1.963257 1 1 1 0  8 2006 100000  8  9402
    0 1  1.8799236 2 1 0 0 10 2006 191000  7 14348
    0 0  -.6200764 2 1 0 0  3 2010 191000  0 14377
    . . -.12007643 1 1 0 0 10 2018 191000  7 14920
    0 0  .29659024 2 1 0 0  3 2001 191000  0 15662
    0 0  2.0465903 2 0 0 1 10 2010 203000  2 16422
    . .  -2.536743 1 1 0 0  4 2018 203000  8 16592
    . . -2.2867432 2 1 1 0  1 2018 203000  5 16649
    0 0 -1.6200764 1 1 0 1  5 2014 203000  9 16658
    . .  -.3700764 1 1 1 0  3 2018 203000  7 16863
    1 1   1.713257 1 1 0 1  1 2014 203000  5 17159
    0 1   1.963257 2 1 0 0 11 2001 203000  3 17363
    0 0  .12992357 2 0 0 1  5 2006 208000  5 17554
    0 0  -1.786743 1 1 1 0  4 2010 208000  4 17997
    0 0 -.20340976 1 0 0 0  9 2006 208000  9 18166
    0 0 -1.9534098 2 0 0 0  6 2006 208000  6 18238
    0 0  .12992357 2 1 0 1  5 2014 208000  5 18350
    0 0 -1.6200764 2 1 1 0  2 2014 208000  2 18385
    . 0 -1.1200764 1 1 0 1  8 2006 233000 11 18833
    0 0  -.3700764 1 1 1 0 11 2010 233000  2 19051
    0 1 -2.2867432 1 1 0 1  7 2001 233000 10 20044
    0 0  1.8799236 2 1 0 1 10 2014 246000 10 20454
    0 . -2.1200764 2 1 0 1  9 2010 246000  9 20556
    0 1  2.2132568 2 1 1 0  5 2010 246000  5 20952
    0 1   1.963257 2 1 1 0  8 2006 246000  8 21023
    0 0  -.0367431 1 1 0 1  8 2010 246000  8 21156
    0 0  -1.786743 2 1 0 1  6 2001 246000  6 21168
    . . -2.0367432 2 0 0 1 11 2018 250000 11 22222
    . . -1.9534098 1 0 0 1  9 2018 250000  9 22471
    . .  -.5367431 2 0 0 0  4 2018 250000  4 22600
    0 0   1.963257 1 1 0 1  9 2006 250000  9 22933
    . .  1.3799236 2 1 0 0  5 2018 250000  5 23207
    0 0  -2.786743 2 0 0 0  7 2001 250000  7 24005
    . .   .6299236 2 0 0 0  2 2018 300000  2 27513
    0 0   .3799236 1 1 0 1  3 2010 300000  3 27625
    0 0   .2132569 2 0 1 0  5 2010 348000 11 28850
    0 . -1.7034098 1 1 0 0  5 2014 348000 11 28981
    0 0 -2.0367432 2 1 0 0  9 2014 348000  3 29145
    . .  .29659024 1 1 0 1  6 2018 348000  0 29418
    0 0   1.963257 1 1 0 1  9 2001 348000  3 29840
    1 1   .5465902 2 1 1 0  0 2006 352000  0 31423
    0 0  -1.536743 2 1 0 1  1 2006 352000  1 31474
    0 0   .2132569 2 1 1 0  4 2006 352000  4 31736
    0 0  2.3799236 1 0 0 1  2 2014 352000  2 31920
    0 0 -2.2034097 2 0 0 0  1 2010 372000  1 33277
    0 0  1.3799236 1 0 0 1  5 2014 380000  5 35811
    0 1 -1.8700764 2 1 0 1  8 2006 380000  8 35812
    0 0  1.8799236 1 1 0 1  6 2010 380000  6 35842
    0 0 -2.0367432 1 0 1 0  7 2014 428000  7 38102
    . .  2.3799236 1 1 0 1  1 2018 428000  1 38507
    0 1  -.4534098 1 1 0 1  1 2010 440000  1 39537
    0 1  1.6299236 1 1 0 0  0 2006 440000  0 39541
    1 1  2.2965903 1 1 0 1  4 2010 440000  4 39681
    0 0   .2132569 2 1 0 1  5 2010 440000  5 39686
    0 0 -2.3700764 2 1 0 1  3 2014 442000  7 40807
    0 0  -2.536743 1 1 0 1  5 2014 442000  9 41185
    0 0 -2.8700764 2 1 0 1  1 2010 528000  4 43253
    . .  .29659024 1 1 0 0  0 2018 528000  3 43771
    0 1   1.963257 1 . 0 0  4 2001 528000  7 44565
    0 0  .29659024 1 . 0 1  6 2014 578000  6 44829
    0 0  2.1299236 1 . 0 1  7 2014 578000  7 44952
    1 1   1.463257 2 0 0 1 11 2010 578000 11 45041
    0 0 -.12007643 1 1 0 1 10 2006 616000  4 46956
    0 0   1.463257 2 1 0 0  5 2010 703000  9 53032
    0 0   1.963257 2 0 0 1  7 2006 705000  7 53958
    1 1  1.8799236 2 0 0 0  8 2006 705000  8 54007
    0 0   .4632569 1 1 0 1  1 2014 705000  1 54098
    0 . -.20340976 2 1 0 1  0 2006 724000  0 55349
    0 1  2.2132568 1 1 0 0  5 2010 724000  5 56480
    0 0 -2.2034097 2 0 0 1  7 2010 752000  7 57474
    0 0 -1.6200764 1 1 0 1  0 2010 752000  0 57657
    0 0  -.3700764 2 1 1 0 10 2014 752000 10 57880
    . .  -.0367431 1 1 0 1  9 2018 804000  9 62431
    0 1    2.54659 1 1 0 0  0 2006 804000  0 63471
    0 0 -1.8700764 1 1 0 0  8 2006 807000  8 64927
    0 0 -2.2867432 1 1 0 0  6 2010 807000  6 65219
    0 .  -.6200764 1 1 0 1  5 2014 807000  5 65591
    . .  .12992357 1 1 0 0  8 2018 807000  8 65809
    0 0 -2.1200764 1 0 0 0  4 2010 826001  8 66162
    0 0 -1.6200764 2 1 0 1 11 2006 826001  3 66624
    0 0   .2132569 2 1 0 0  5 2001 826001  9 66973
    0 0   .4632569 1 1 0 1  2 2001 826001  6 67152
    0 0   .4632569 2 . 0 1  2 2014 826002  0 67380
    0 1  2.1299236 1 1 0 1  5 2010 826002  3 67623
    . .    2.54659 1 1 0 1  2 2018 826002  0 67728
    0 0  -.6200764 2 1 1 0  1 2010 826002 11 67755
    0 1  1.6299236 2 1 0 1 11 2006 826002  9 67919
    0 0 -1.1200764 1 1 0 1  8 2010 826002  6 68137
    0 0 -1.3700764 1 0 0 0  8 2010 826003  0 68690
    0 0   .5465902 2 0 0 1 10 2010 826003  2 69241
    end
    label values sex sex
    label def sex 1 "Boy", modify
    label def sex 2 "Girl", modify
    label values countryno countryno
    label def countryno 40000 "Austria", modify
    label def countryno 56001 "Belgium (Flemish)", modify
    label def countryno 56002 "Belgium (French)", modify
    label def countryno 100000 "Bulgaria", modify
    label def countryno 191000 "Croatia", modify
    label def countryno 203000 "Czech Republic", modify
    label def countryno 208000 "Denmark", modify
    label def countryno 233000 "Estonia", modify
    label def countryno 246000 "Finland", modify
    label def countryno 250000 "France", modify
    label def countryno 300000 "Greece", modify
    label def countryno 348000 "Hungary", modify
    label def countryno 352000 "Iceland", modify
    label def countryno 372000 "Ireland", modify
    label def countryno 380000 "Italy", modify
    label def countryno 428000 "Latvia", modify
    label def countryno 440000 "Lithuania", modify
    label def countryno 442000 "Luxembourg", modify
    label def countryno 528000 "Netherlands", modify
    label def countryno 578000 "Norway", modify
    label def countryno 616000 "Poland", modify
    label def countryno 703000 "Slovakia", modify
    label def countryno 705000 "Slovenia", modify
    label def countryno 724000 "Spain", modify
    label def countryno 752000 "Sweden", modify
    label def countryno 804000 "Ukraine", modify
    label def countryno 807000 "Macedonia", modify
    label def countryno 826001 "England", modify
    label def countryno 826002 "Scotland", modify
    label def countryno 826003 "Wales", modify
    label values RAE_M RAE_M
    label def RAE_M 0 "0.RA", modify
    label def RAE_M 1 "1.RA", modify
    label def RAE_M 2 "2.RA", modify
    label def RAE_M 3 "3.RA", modify
    label def RAE_M 4 "4.RA", modify
    label def RAE_M 5 "5.RA", modify
    label def RAE_M 6 "6.RA", modify
    label def RAE_M 7 "7.RA", modify
    label def RAE_M 8 "8.RA", modify
    label def RAE_M 9 "9.RA", modify
    label def RAE_M 10 "10.RA", modify
    label def RAE_M 11 "11.RA", modify
    [/CODE]


    Code:
    ivmediate smokeW centered_age centered_age sex both_parents FAS1_D2 FAS1_D3 i.monthbirth2 i.wave i.countryno, /// *REG1
    mediator(percab) treatment(diff_12) instrument(RAE_M) vce(cluster class_zed) full
    
    ivmediate ever_drunk age centered_age sex both_parents FAS1_D2 FAS1_D3 i.monthbirth2 i.wave i.countryno, /// *REG2
    mediator(wellbeing) treatment(diff_12) instrument(RAE_M) vce(cluster class_zed) full
    I omit most output; the relevant one is this for REG1
    Code:
    Mediator percab explains 0.38% of the total effect.
    I omit most output; the relevant one is this for REG2
    Code:
    Mediator wellbeing explains 0.38% of the total effect.

  • #2
    can't estimate with the dataex provided

    Comment


    • #3
      I am sorry, I did not load the two mediators (but it was still running in my Stata...well, because I still had all the original data in memory).
      Here is the correct dataex

      Code:
      * Example generated by -dataex-. To install: ssc install dataex
      clear
      input float(smokeW ever_drunk percab wellbeing centered_age) byte sex float both_parents byte(FAS1_D2 FAS1_D3) float(monthbirth2 wave) long countryno float(RAE_M class_zed)
      . .         . -.25637776  -.4534098 1 1 0 0  1 2018  40000  5  1641
      0 0 .22596943  1.1455141  1.3799236 2 1 0 1  4 2014  40000  8  1727
      0 0 .22596943  1.1455141  1.0465902 2 1 0 0  2 2001  40000  6  2457
      0 0 -.9725463 -.25637776 -3.1200764 2 . 0 0  4 2001  40000  8  2538
      0 0 .22596943 -.25637776  .04659024 2 . 0 1  6 2014  56001  6  3414
      0 1 -.9725463  1.1455141 -1.9534098 1 1 0 1  9 2010  56002  9  5682
      0 0 -.9725463          .  -.0367431 2 1 0 1 10 2006  56002 10  6553
      . .         .  1.1455141  .29659024 2 1 0 1  0 2018  56002  0  6985
      . .         .  1.1455141  -1.786743 1 0 0 0  7 2018 100000  7  8832
      0 0 .22596943  1.1455141 -.20340976 1 1 0 0 10 2006 100000 10  9460
      0 0  1.424485 -.25637776  2.2132568 2 1 0 0  8 2014 100000  8  9639
      0 0  1.424485 -.25637776  -1.536743 2 1 1 0  3 2014 191000  0 14785
      0 1 -2.171062 -1.6582696  -.3700764 2 1 0 1  1 2006 191000 10 15033
      0 0  1.424485  1.1455141  -.0367431 1 1 0 0  9 2006 191000  6 15125
      0 0 .22596943  1.1455141 -1.6200764 1 1 0 1  4 2014 191000  1 15391
      0 0 .22596943  1.1455141   2.713257 1 1 0 0 10 2001 191000  7 15533
      1 1 .22596943 -3.0601616   .7965902 1 1 0 0  9 2001 191000  6 15616
      0 1 .22596943  1.1455141  -1.786743 1 1 0 1  4 2001 191000  1 15703
      0 1 -.9725463 -.25637776  -.3700764 2 0 0 1  2 2014 203000  6 16586
      . .         . -.25637776  1.6299236 2 0 0 0  2 2018 203000  6 16935
      . .         .  1.1455141  1.3799236 2 1 1 0  6 2018 203000 10 17114
      0 0         .  1.1455141 -1.3700764 2 1 1 0  3 2001 203000  7 17229
      0 0 -.9725463 -1.6582696   1.213257 1 1 0 0  4 2006 208000  4 17981
      0 0 .22596943  1.1455141   1.963257 1 0 1 0  7 2010 208000  7 18006
      0 0 -2.171062  1.1455141  1.5465902 1 0 1 0  0 2010 208000  0 18154
      1 1 .22596943 -.25637776    2.54659 2 . 0 0  1 2001 208000  1 18560
      0 1 -.9725463 -.25637776  2.3799236 1 1 0 1  3 2001 208000  3 18664
      . 0 .22596943  1.1455141  .04659024 1 1 0 0  6 2010 233000  9 19242
      0 0 -.9725463 -.25637776  .29659024 2 1 0 0  4 2014 233000  7 19525
      0 0 .22596943 -.25637776  -.0367431 1 1 0 0  7 2010 233000 10 19694
      0 0 .22596943 -.25637776 -2.3700764 2 0 0 0  8 2001 233000 11 20053
      0 0 .22596943  1.1455141 -1.6200764 1 1 0 1  5 2010 250000  5 22864
      0 0 -.9725463 -.25637776   1.713257 1 1 1 0  0 2006 250000  0 23343
      . 0 -2.171062  1.1455141 -2.3700764 2 1 0 1  1 2006 250000  1 23818
      0 0 .22596943          . -2.0367432 2 1 0 0  8 2001 250000  8 24255
      . .         . -3.0601616  1.8799236 1 0 0 0 11 2018 300000 11 27675
      . .         .  1.1455141   1.963257 1 1 0 0 10 2018 300000 10 27879
      0 0 .22596943  1.1455141  2.3799236 2 1 1 0  4 2014 300000  4 27917
      0 1 .22596943 -1.6582696 -1.1200764 2 1 0 0  9 2006 348000  3 28720
      0 1 -.9725463 -.25637776 -.12007643 1 0 0 0  9 2010 348000  3 29205
      0 0 -.9725463 -.25637776 -1.9534098 2 1 0 0  8 2014 348000  2 29447
      0 0 .22596943 -.25637776 -1.7034098 2 1 0 1  3 2006 352000  3 30035
      0 0 .22596943  1.1455141  -.3700764 1 0 0 1 11 2006 352000 11 30217
      0 0 -.9725463  1.1455141 -2.1200764 2 1 0 1  8 2006 352000  8 30723
      . .         .  1.1455141  .29659024 1 1 0 1  3 2018 352000  3 31154
      0 0  1.424485 -.25637776   1.463257 2 0 0 1 10 2010 352000 10 31304
      0 0  1.424485 -.25637776 -2.0367432 1 0 1 0  7 2014 352000  7 31426
      0 0  1.424485 -.25637776   .4632569 2 1 1 0  1 2014 352000  1 31428
      0 0  1.424485 -1.6582696 -2.2867432 1 1 0 1  7 2010 352000  7 31956
      . .         . -.25637776   .3799236 2 1 0 1  5 2018 372000  5 33060
      0 . .22596943  1.1455141 -2.8700764 1 1 0 0  6 2006 372000  6 33092
      0 0 -.9725463 -.25637776  1.1299236 1 1 0 0  9 2010 372000  9 33210
      0 1 .22596943 -.25637776  .12992357 2 0 0 0  8 2006 372000  8 33863
      0 1 .22596943 -.25637776  2.1299236 1 1 0 1  2 2010 380000  2 35933
      . .         .  1.1455141 -2.1200764 2 1 0 0  7 2018 428000  7 37828
      0 0 .22596943 -.25637776  -.0367431 1 1 0 1  7 2014 428000  7 37902
      0 1  1.424485  1.1455141  .04659024 1 1 1 0  7 2006 440000  7 39771
      0 1 .22596943  1.1455141  1.8799236 1 1 0 0  9 2001 440000  9 39907
      0 0 .22596943 -.25637776 -1.9534098 1 1 0 0  7 2001 440000  7 39929
      0 0  1.424485 -.25637776 -.12007643 2 1 0 1  9 2006 442000  1 41480
      . .         . -.25637776   1.963257 2 0 1 0  8 2018 442000  0 41693
      0 0 .22596943 -.25637776 -1.7034098 1 1 0 1 11 2014 528000  2 43269
      0 1 -.9725463  1.1455141  2.1299236 1 0 0 1  2 2014 528000  5 43691
      0 0 -.9725463 -.25637776  1.1299236 1 1 0 0  8 2014 578000  8 44969
      0 0  1.424485 -.25637776  -2.536743 2 1 0 1 11 2001 578000 11 45686
      0 0 -.9725463 -1.6582696  2.1299236 1 1 0 0  6 2010 616000  0 46122
      0 0 -.9725463 -1.6582696 -1.9534098 2 1 0 0  7 2006 616000  1 46398
      0 0 .22596943 -.25637776 -1.3700764 2 1 0 0  0 2006 616000  6 46941
      0 0 -.9725463  1.1455141 -2.2034097 2 . 0 1  0 2014 703000  4 53106
      0 1 -.9725463  1.1455141   .4632569 1 1 1 0  1 2010 705000  1 53657
      . .         .  1.1455141 -2.0367432 1 1 1 0  7 2018 705000  7 53980
      0 1 -.9725463  1.1455141  1.5465902 1 1 0 1  0 2010 705000  0 54161
      . .         . -.25637776  .04659024 1 0 1 0  8 2018 724000  8 55109
      0 . .22596943 -.25637776 -1.7034098 1 1 0 1  6 2006 724000  6 55227
      0 . .22596943  1.1455141    2.79659 2 1 0 1  0 2006 724000  0 55745
      0 . .22596943 -.25637776  1.5465902 2 1 0 0  3 2006 724000  3 55756
      0 0  1.424485  1.1455141 -1.7034098 2 1 0 1  1 2010 752000  1 57513
      0 0 .22596943  1.1455141 -1.9534098 2 1 0 1  4 2006 752000  4 58312
      1 1 -2.171062 -.25637776   1.963257 1 1 1 0  7 2006 804000  7 62807
      . .         . -.25637776  .04659024 2 1 0 0  8 2018 804000  8 63175
      . .         . -.25637776 -2.2867432 2 1 0 0  1 2018 804000  1 63939
      0 0 -.9725463 -1.6582696  1.6299236 2 1 0 1  1 2006 807000  1 65547
      1 1 .22596943  1.1455141  2.0465903 1 1 0 0  8 2006 807000  8 65568
      . .         .  1.1455141 -1.9534098 2 0 0 1  9 2018 807000  9 65835
      0 0 .22596943  1.1455141  2.2132568 1 1 0 1  5 2001 807000  5 65921
      0 0  1.424485 -.25637776  2.0465903 1 1 0 0  7 2001 807000  7 65955
      1 1 .22596943 -.25637776  .29659024 2 1 0 1  0 2014 826001  4 66585
      0 1 .22596943  1.1455141    2.79659 2 0 0 1 11 2014 826001  3 66733
      0 0  1.424485 -.25637776 -1.2034098 1 1 1 0 10 2014 826001  2 66754
      0 0 -.9725463  1.1455141  2.2132568 1 1 0 1  1 2006 826001  5 66829
      0 0 .22596943 -.25637776 -1.7034098 1 1 0 1  4 2001 826001  8 67038
      0 0  1.424485 -.25637776   -2.45341 2 1 0 0 11 2006 826002  9 67279
      0 1 -2.171062 -.25637776  1.6299236 1 1 1 0 10 2006 826002  8 68188
      0 0 -.9725463 -1.6582696  -1.536743 1 0 0 0  0 2010 826002 10 68245
      0 0 .22596943 -.25637776  2.2132568 1 1 0 1  4 2010 826002  2 68348
      0 0  1.424485 -.25637776 -2.0367432 1 1 1 0  7 2001 826002  5 68365
      0 0 -.9725463 -.25637776  -.0367431 1 1 1 0  7 2006 826003 11 68636
      0 1 -.9725463 -.25637776  2.1299236 2 1 1 0  4 2006 826003  8 68964
      0 1  1.424485 -.25637776  -.0367431 1 1 0 0  4 2010 826003  8 69167
      0 1 .22596943          .   .7132569 1 1 0 0 10 2001 826003  2 69381
      end
      label values sex sex
      label def sex 1 "Boy", modify
      label def sex 2 "Girl", modify
      label values countryno countryno
      label def countryno 40000 "Austria", modify
      label def countryno 56001 "Belgium (Flemish)", modify
      label def countryno 56002 "Belgium (French)", modify
      label def countryno 100000 "Bulgaria", modify
      label def countryno 191000 "Croatia", modify
      label def countryno 203000 "Czech Republic", modify
      label def countryno 208000 "Denmark", modify
      label def countryno 233000 "Estonia", modify
      label def countryno 250000 "France", modify
      label def countryno 300000 "Greece", modify
      label def countryno 348000 "Hungary", modify
      label def countryno 352000 "Iceland", modify
      label def countryno 372000 "Ireland", modify
      label def countryno 380000 "Italy", modify
      label def countryno 428000 "Latvia", modify
      label def countryno 440000 "Lithuania", modify
      label def countryno 442000 "Luxembourg", modify
      label def countryno 528000 "Netherlands", modify
      label def countryno 578000 "Norway", modify
      label def countryno 616000 "Poland", modify
      label def countryno 703000 "Slovakia", modify
      label def countryno 705000 "Slovenia", modify
      label def countryno 724000 "Spain", modify
      label def countryno 752000 "Sweden", modify
      label def countryno 804000 "Ukraine", modify
      label def countryno 807000 "Macedonia", modify
      label def countryno 826001 "England", modify
      label def countryno 826002 "Scotland", modify
      label def countryno 826003 "Wales", modify
      label values RAE_M RAE_M
      label def RAE_M 0 "0.RA", modify
      label def RAE_M 1 "1.RA", modify
      label def RAE_M 2 "2.RA", modify
      label def RAE_M 3 "3.RA", modify
      label def RAE_M 4 "4.RA", modify
      label def RAE_M 5 "5.RA", modify
      label def RAE_M 6 "6.RA", modify
      label def RAE_M 7 "7.RA", modify
      label def RAE_M 8 "8.RA", modify
      label def RAE_M 9 "9.RA", modify
      label def RAE_M 10 "10.RA", modify
      label def RAE_M 11 "11.RA", modify
      Last edited by FLuca; 27 Jun 2024, 15:25.

      Comment

      Working...
      X