Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Margins pwcompare gives the same t -statistic and p-values for all contrasts

    I run the following treatment effect regression:

    Code:
    qui regress y1 ctreat y0 i.district, cluster(cid)


    where y1 is the outcome,
    ctreat is the treatment variable that is zero for the control group but continuous for the treatment group,
    y0 is the outcome variable at baseline
    district is the district (location) indicator
    cid is the cluster identifier


    The output is as follows
    Code:
    Linear regression                         Number of obs     =      2,663
                                                    F(14, 134)        =      85.44
                                                    Prob > F          =     0.0000
                                                    R-squared         =     0.4692
                                                    Root MSE          =      24.35
    
                                      (Std. err. adjusted for 135 clusters in cid)
    ------------------------------------------------------------------------------
                 |               Robust
              y1 | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
    -------------+----------------------------------------------------------------
          ctreat |   .0027545   .0009769     2.82   0.006     .0008224    .0046865
              y0 |   .0183763    .058014     0.32   0.752    -.0963652    .1331179
                 |
        district |
              2  |   6.233628   4.117701     1.51   0.132    -1.910467    14.37772
              3  |   27.25729   5.079016     5.37   0.000     17.21188     37.3027
              4  |   13.79617   8.248232     1.67   0.097    -2.517393    30.10974
              5  |   10.68128    5.32056     2.01   0.047     .1581417    21.20442
              6  |   1.774933   5.046554     0.35   0.726    -8.206271    11.75614
              7  |  -12.30428   5.431784    -2.27   0.025     -23.0474   -1.561155
              8  |  -21.82611   4.653727    -4.69   0.000    -31.03037   -12.62185
              9  |  -41.36124   3.739212   -11.06   0.000    -48.75675   -33.96573
             10  |  -4.462939   7.175909    -0.62   0.535    -18.65564    9.729757
             11  |  -14.43221   3.751938    -3.85   0.000    -21.85288   -7.011527
             12  |  -55.43812   3.669914   -15.11   0.000    -62.69657   -48.17967
             13  |  -1.066209   4.157414    -0.26   0.798     -9.28885    7.156432
                 |
           _cons |   95.93494    5.71724    16.78   0.000     84.62724    107.2426
    ------------------------------------------------------------------------------
    I want to compare the treatment effect at specific thresholds of the treatment variable (a kind of dose response analysis) using the margins command. I did this at the 25th, 50th and 75th percentiles of the treatment variable as follows:

    Code:
    g d=ctreat if ctreat>0 
    _pctile d, p(25 50 75)
    margins, at(ctreat = (0 `r(r1)' `r(r2)' `r(r3)')) pwcompare(pv)


    The results are as follows:

    Code:
    Pairwise comparisons of predictive margins               Number of obs = 2,663
    Model VCE: Robust
    
    Expression: Linear prediction, predict()
    1._at: ctreat =        0
    2._at: ctreat = 354.7357
    3._at: ctreat = 603.0507
    4._at: ctreat = 1064.207
    
    -----------------------------------------------------
                 |            Delta-method    Unadjusted
                 |   Contrast   std. err.      t    P>|t|
    -------------+---------------------------------------
             _at |
         2 vs 1  |   .9771054    .346526     2.82   0.006
         3 vs 1  |   1.661079   .5890943     2.82   0.006
         4 vs 1  |   2.931316   1.039578     2.82   0.006
         3 vs 2  |   .6839738   .2425682     2.82   0.006
         4 vs 2  |   1.954211   .6930521     2.82   0.006
         4 vs 3  |   1.270237   .4504838     2.82   0.006
    -----------------------------------------------------



    My question is why the t-statistics and the p-values are exactly the same for all Contrasts? Did I do something wrong?
Working...
X