Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Seemingly Unrelated Regression with same independent variables

    Hi,

    I am trying to estimate two models. They are separately like this

    reg y1 x
    reg y2 x

    Since there are two dependent variables and same independent variables, does this mean running them separately is equivalent to running SUREG with them combined?
    sureg y1 y2 = x

    Can I still use SUREG to address the correlation between y1 and y2? Any econometrics reference can support this?

    Thank you very much!

  • #2
    Shuai:
    while the point estimates remain the same, the SEs change:

    Code:
    . use "C:\Program Files\Stata18\ado\base\a\auto.dta"
    (1978 automobile data)
    
    . sureg (price i.foreign trunk) (mpg i.foreign trunk)
    
    Seemingly unrelated regression
    ------------------------------------------------------------------------------
    Equation             Obs   Params         RMSE  "R-squared"      chi2   P>chi2
    ------------------------------------------------------------------------------
    price                 74        2      2734.29      0.1288      10.94   0.0042
    mpg                   74        2     4.534574      0.3773      44.83   0.0000
    ------------------------------------------------------------------------------
    
    ------------------------------------------------------------------------------
                 | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
    -------------+----------------------------------------------------------------
    price        |
         foreign |
        Foreign  |   1190.155   745.2236     1.60   0.110    -270.4564    2650.766
           trunk |   262.7717   80.17556     3.28   0.001     105.6304    419.9129
           _cons |   2196.541   1241.891     1.77   0.077    -237.5211    4630.603
    -------------+----------------------------------------------------------------
    mpg          |
         foreign |
        Foreign  |   2.661582   1.235886     2.15   0.031     .2392899    5.083874
           trunk |  -.6837128   .1329639    -5.14   0.000    -.9443173   -.4231082
           _cons |   29.91169   2.059565    14.52   0.000     25.87501    33.94836
    ------------------------------------------------------------------------------
    
    . regress price i.foreign trunk
    
          Source |       SS           df       MS      Number of obs   =        74
    -------------+----------------------------------   F(2, 71)        =      5.25
           Model |  81816017.5         2  40908008.7   Prob > F        =    0.0075
        Residual |   553249379        71  7792244.77   R-squared       =    0.1288
    -------------+----------------------------------   Adj R-squared   =    0.1043
           Total |   635065396        73  8699525.97   Root MSE        =    2791.5
    
    ------------------------------------------------------------------------------
           price | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
    -------------+----------------------------------------------------------------
         foreign |
        Foreign  |   1190.155   760.8049     1.56   0.122    -326.8468    2707.157
           trunk |   262.7717   81.85189     3.21   0.002     99.56364    425.9797
           _cons |   2196.541   1267.857     1.73   0.088    -331.4939    4724.576
    ------------------------------------------------------------------------------
    
    . regress mpg i.foreign trunk
    
          Source |       SS           df       MS      Number of obs   =        74
    -------------+----------------------------------   F(2, 71)        =     21.51
           Model |  921.845002         2  460.922501   Prob > F        =    0.0000
        Residual |  1521.61446        71  21.4311895   R-squared       =    0.3773
    -------------+----------------------------------   Adj R-squared   =    0.3597
           Total |  2443.45946        73  33.4720474   Root MSE        =    4.6294
    
    ------------------------------------------------------------------------------
             mpg | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
    -------------+----------------------------------------------------------------
         foreign |
        Foreign  |   2.661582   1.261726     2.11   0.038     .1457715    5.177393
           trunk |  -.6837128    .135744    -5.04   0.000    -.9543785    -.413047
           _cons |   29.91169   2.102626    14.23   0.000     25.71917     34.1042
    ------------------------------------------------------------------------------
    
    .
    Kind regards,
    Carlo
    (StataNow 18.5)

    Comment


    • #3
      Originally posted by Carlo Lazzaro View Post
      Shuai:
      while the point estimates remain the same, the SEs change:

      Code:
      . use "C:\Program Files\Stata18\ado\base\a\auto.dta"
      (1978 automobile data)
      
      . sureg (price i.foreign trunk) (mpg i.foreign trunk)
      
      Seemingly unrelated regression
      ------------------------------------------------------------------------------
      Equation Obs Params RMSE "R-squared" chi2 P>chi2
      ------------------------------------------------------------------------------
      price 74 2 2734.29 0.1288 10.94 0.0042
      mpg 74 2 4.534574 0.3773 44.83 0.0000
      ------------------------------------------------------------------------------
      
      ------------------------------------------------------------------------------
      | Coefficient Std. err. z P>|z| [95% conf. interval]
      -------------+----------------------------------------------------------------
      price |
      foreign |
      Foreign | 1190.155 745.2236 1.60 0.110 -270.4564 2650.766
      trunk | 262.7717 80.17556 3.28 0.001 105.6304 419.9129
      _cons | 2196.541 1241.891 1.77 0.077 -237.5211 4630.603
      -------------+----------------------------------------------------------------
      mpg |
      foreign |
      Foreign | 2.661582 1.235886 2.15 0.031 .2392899 5.083874
      trunk | -.6837128 .1329639 -5.14 0.000 -.9443173 -.4231082
      _cons | 29.91169 2.059565 14.52 0.000 25.87501 33.94836
      ------------------------------------------------------------------------------
      
      . regress price i.foreign trunk
      
      Source | SS df MS Number of obs = 74
      -------------+---------------------------------- F(2, 71) = 5.25
      Model | 81816017.5 2 40908008.7 Prob > F = 0.0075
      Residual | 553249379 71 7792244.77 R-squared = 0.1288
      -------------+---------------------------------- Adj R-squared = 0.1043
      Total | 635065396 73 8699525.97 Root MSE = 2791.5
      
      ------------------------------------------------------------------------------
      price | Coefficient Std. err. t P>|t| [95% conf. interval]
      -------------+----------------------------------------------------------------
      foreign |
      Foreign | 1190.155 760.8049 1.56 0.122 -326.8468 2707.157
      trunk | 262.7717 81.85189 3.21 0.002 99.56364 425.9797
      _cons | 2196.541 1267.857 1.73 0.088 -331.4939 4724.576
      ------------------------------------------------------------------------------
      
      . regress mpg i.foreign trunk
      
      Source | SS df MS Number of obs = 74
      -------------+---------------------------------- F(2, 71) = 21.51
      Model | 921.845002 2 460.922501 Prob > F = 0.0000
      Residual | 1521.61446 71 21.4311895 R-squared = 0.3773
      -------------+---------------------------------- Adj R-squared = 0.3597
      Total | 2443.45946 73 33.4720474 Root MSE = 4.6294
      
      ------------------------------------------------------------------------------
      mpg | Coefficient Std. err. t P>|t| [95% conf. interval]
      -------------+----------------------------------------------------------------
      foreign |
      Foreign | 2.661582 1.261726 2.11 0.038 .1457715 5.177393
      trunk | -.6837128 .135744 -5.04 0.000 -.9543785 -.413047
      _cons | 29.91169 2.102626 14.23 0.000 25.71917 34.1042
      ------------------------------------------------------------------------------
      
      .
      Thanks. Yes, the SE is different, but I wonder what that implies? Can SUREG still be used to address the intercorrelations among DV?

      Comment


      • #4
        Shuai:
        yes, you can.
        For more details, please read -sureg- entry, Stata .pdf manual and related references. Thanks
        Kind regards,
        Carlo
        (StataNow 18.5)

        Comment


        • #5
          Originally posted by Shuai Yan View Post
          Can SUREG still be used to address the intercorrelations among DV?
          I've been under the impression that SUREG is intended to address multivariate regression where the sets of explanatory (independent) variables are not identical between outcome (dependent) variables.

          In your case, the predictors are the same between response variables.

          So why not just use conventional MANOVA (multivariate regression) in your case? You can see their relationship by running the following code.
          Code:
          version 18.0
          
          clear *
          
          // seedem
          set seed 86162503
          
          quietly drawnorm out1 out2, double corr(1 0.5 \ 0.5 1) n(50)
          
          generate double pre = runiform()
          
          *
          * Begin here
          *
          sureg (out1 c.pre) (out2 c.pre), isure small dfk noheader nolog
          
          // MANOVA
          quietly manova out1 out2 = c.pre
          mvreg , noheader
          
          // Alternative MANOVA
          generate byte pid = _n
          quietly reshape long out, i(pid) j(tim)
          mixed out 1bn.tim 1.tim#c.pre 2.tim 2.tim#c.pre, noconstant || pid: , ///
              noconstant residuals(unstructured, t(tim)) ///
              reml dfmethod(kroger) nolrtest nolog
          
          exit
          And to answer your question: Yes.

          Comment


          • #6
            Oh, I didn't see his post before I responded, but Carlo already answered your question. Still, you can run the code to see the relationship.

            Comment

            Working...
            X