Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Post estimation with meoprobit

    Code:
    * Example generated by -dataex-. For more info, type help dataex
    clear
    input byte pid double trt byte(gp score)
    11 3 1 95
    12 3 2 95
    13 3 3 85
    14 3 4 95
    15 3 5 75
    16 4 1 70
    17 4 2 90
    18 4 3 70
    19 4 4 81
    20 4 5 15
    21 5 1 85
    22 5 2 80
    23 5 3 99
    24 5 4 85
    25 5 5 11
    26 6 1 31
    27 6 2 70
    28 6 3 27
    29 6 4 71
    30 6 5  7
    31 7 1 21
    32 7 2 89
    33 7 3 21
    34 7 4 62
    35 7 5  4
    end
    I have a repeated measures design where 5 GPs have scored 5 treatments on a 100mm VAS scale and I thought that meoprobit would be an appropriate method of analysis:
    Code:
    . meoprobit score i.trt || gp:,nolog
    
    Mixed-effects oprobit regression                Number of obs     =         25
    Group variable: gp                              Number of groups  =          5
    
                                                    Obs per group:
                                                                  min =          5
                                                                  avg =        5.0
                                                                  max =          5
    
    Integration method: mvaghermite                 Integration pts.  =          7
    
                                                    Wald chi2(4)      =      18.20
    Log likelihood = -57.179953                     Prob > chi2       =     0.0011
    ------------------------------------------------------------------------------
           score | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
    -------------+----------------------------------------------------------------
             trt |
              3  |      0.000  (base)
              4  |     -2.001      0.739    -2.71   0.007       -3.450      -0.552
              5  |     -1.184      0.699    -1.70   0.090       -2.553       0.185
              6  |     -3.244      0.872    -3.72   0.000       -4.952      -1.535
              7  |     -3.527      0.895    -3.94   0.000       -5.282      -1.772
    -------------+----------------------------------------------------------------
           /cut1 |     -6.226      1.541                        -9.246      -3.206
           /cut2 |     -5.271      1.345                        -7.906      -2.635
           /cut3 |     -4.641      1.203                        -6.999      -2.283
           /cut4 |     -4.199      1.129                        -6.413      -1.986
           /cut5 |     -3.480      1.035                        -5.509      -1.452
           /cut6 |     -3.188      1.006                        -5.160      -1.216
           /cut7 |     -2.909      0.978                        -4.826      -0.993
           /cut8 |     -2.630      0.948                        -4.488      -0.772
           /cut9 |     -1.932      0.890                        -3.676      -0.188
          /cut10 |     -1.710      0.872                        -3.419      -0.001
          /cut11 |     -1.442      0.851                        -3.111       0.227
          /cut12 |     -1.188      0.840                        -2.834       0.457
          /cut13 |     -0.971      0.831                        -2.600       0.657
          /cut14 |     -0.373      0.816                        -1.973       1.226
          /cut15 |     -0.141      0.817                        -1.741       1.460
          /cut16 |      0.195      0.810                        -1.392       1.782
          /cut17 |      1.291      0.859                        -0.392       2.974
    -------------+----------------------------------------------------------------
    gp           |
       var(_cons)|      1.866      1.539                         0.370       9.401
    ------------------------------------------------------------------------------
    LR test vs. oprobit model: chibar2(01) = 11.95        Prob >= chibar2 = 0.0003
    I can see that there is an overall effect of treatment:
    Code:
    . testparm i(3/7).trt
    
     ( 1)  [score]4.trt = 0
     ( 2)  [score]5.trt = 0
     ( 3)  [score]6.trt = 0
     ( 4)  [score]7.trt = 0
    
               chi2(  4) =   18.20
             Prob > chi2 =    0.0011
    but I am uncertain about comparing the individual treatments. Is pwcompare appropriate as probabilities are involved:
    Code:
    . pwcompare trt, groups
    
    Pairwise comparisons of marginal linear predictions
    
    Margins: asbalanced
    
    -------------------------------------------------
                 |                         Unadjusted
                 |     Margin   Std. err.      groups
    -------------+-----------------------------------
    score        |
             trt |
              3  |      0.000      0.000            D
              4  |     -2.001      0.739          BC
              5  |     -1.184      0.699           CD
              6  |     -3.244      0.872         AB  
              7  |     -3.527      0.895         A   
    -------------------------------------------------
    Note: Margins sharing a letter in the group label
          are not significantly different at the 5%
          level.
    Thank you.

    Eddy Stata IC 17.0
Working...
X