Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • How to explain KHB methods with categorical variable properly?

    Dear all,
    I am working with a research about how teacher-student gender matching affect their relationship. And my mediating variable are instrumental help and emotional help (both are continuous).
    Since my core independent variable is a categorical one, I used KHB method and had following output. How can I properly explain it?

    Decomposition using Linear Probability Models

    Model-Type: regress Number of obs = 8166
    Variables of Interest: i.gender#i.tsame R-squared = 0.13
    Z-variable(s): z1
    Concomitant: teachage size i.ecolevel psycho2
    ------------------------------------------------------------------------------------
    | Robust
    relation_student | Coefficient std. err. z P>|z| [95% conf. interval]
    -------------------+----------------------------------------------------------------
    0b.gender#0b.tsame |
    Reduced | 0 (omitted)
    Full | 0 (omitted)
    Diff | 0 .0070213 0.00 1.000 -.0137615 .0137615
    -------------------+----------------------------------------------------------------
    0b.gender#1.tsame |
    Reduced | .1985162 .0631909 3.14 0.002 .0746644 .322368
    Full | .1846142 .0629946 2.93 0.003 .061147 .3080813
    Diff | .013902 .0075515 1.84 0.066 -.0008986 .0287027
    -------------------+----------------------------------------------------------------
    1.gender#0b.tsame |
    Reduced | -.0978496 .0639097 -1.53 0.126 -.2231103 .027411
    Full | -.1138552 .0638131 -1.78 0.074 -.2389266 .0112162
    Diff | .0160056 .0077162 2.07 0.038 .000882 .0311292
    -------------------+----------------------------------------------------------------
    1.gender#1.tsame |
    Reduced | -.0895746 .0382493 -2.34 0.019 -.1645418 -.0146073
    Full | -.0903552 .0382317 -2.36 0.018 -.1652879 -.0154226
    Diff | .0007807 .007023 0.11 0.911 -.0129842 .0145456
    ------------------------------------------------------------------------------------


    Decomposition using Linear Probability Models

    Model-Type: regress Number of obs = 8166
    Variables of Interest: i.gender#i.tsame R-squared = 0.12
    Z-variable(s): z2
    Concomitant: teachage size i.ecolevel psycho2
    ------------------------------------------------------------------------------------
    | Robust
    relation_student | Coefficient std. err. z P>|z| [95% conf. interval]
    -------------------+----------------------------------------------------------------
    0b.gender#0b.tsame |
    Reduced | 0 (omitted)
    Full | 0 (omitted)
    Diff | 0 .0049755 0.00 1.000 -.0097519 .0097519
    -------------------+----------------------------------------------------------------
    0b.gender#1.tsame |
    Reduced | .1985162 .063497 3.13 0.002 .0740643 .3229681
    Full | .1832494 .0632838 2.90 0.004 .0592154 .3072835
    Diff | .0152668 .0068277 2.24 0.025 .0018847 .0286489
    -------------------+----------------------------------------------------------------
    1.gender#0b.tsame |
    Reduced | -.0978496 .0638312 -1.53 0.125 -.2229566 .0272573
    Full | -.1096245 .063737 -1.72 0.085 -.2345468 .0152978
    Diff | .0117749 .006145 1.92 0.055 -.0002691 .0238188
    -------------------+----------------------------------------------------------------
    1.gender#1.tsame |
    Reduced | -.0895746 .0384875 -2.33 0.020 -.1650086 -.0141405
    Full | -.0906403 .0384616 -2.36 0.018 -.1660237 -.015257
    Diff | .0010658 .0049862 0.21 0.831 -.008707 .0108386
    ------------------------------------------------------------------------------------

Working...
X