Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • 2SLS estimation (Warning: estimated covariance matrix of moment conditions not of full rank.)

    Hi

    please im using Ivreg2 to estimate for 2SLS , i control form year using I.year also i use fixed effect by controing i.id , Also i use robust

    ivreg2 EQUITY FSIZE OP_CF SD_OCF TAX BM LEV MA DPP RPP PSIZE DR Gov_score Sustain_Perf Sust_Commit i.id i.year (CSO = Instrumental), first endog(CSO) robust

    at the end of the estimation it appear for me (Warning: estimated covariance matrix of moment conditions not of full rank.)


    When i remove robust at the end of the Ivreg2 , the warning sign disappear


    ivreg2 EQUITY FSIZE OP_CF SD_OCF TAX BM LEV MA DPP RPP PSIZE DR Gov_score Sustain_Perf Sust_Commit i.id i.year (CSO = Instrumental), first endog(CSO)

    Im not sure where is the problem
    Last edited by hussein bataineh; 06 Jun 2024, 08:18.

  • #2
    HTML Code:
     ivreg2 EQUITY  FSIZE OP_CF SD_OCF TAX   BM LEV MA DPP RPP PSIZE   DR  Gov_score Sustain_Perf Sust_Commit i.id  i.year (CSO = Instrumental),  first endog(CSO) robust
    
    First-stage regressions
    -----------------------
    
    
    First-stage regression of CSO:
    
    Statistics robust to heteroskedasticity
    Number of obs =                   4051
    ------------------------------------------------------------------------------
                 |               Robust
             CSO | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
    -------------+----------------------------------------------------------------
    Instrumental |   .0156519   .0025078     6.24   0.000     .0107352    .0205686
           FSIZE |    .008078   .0195917     0.41   0.680    -.0303335    .0464895
           OP_CF |  -.0828493   .1582074    -0.52   0.601    -.3930308    .2273321
          SD_OCF |   1.446089   .3087004     4.68   0.000     .8408507    2.051327
             TAX |   .0273629   .0207264     1.32   0.187    -.0132732    .0679991
              BM |  -.0247828   .0320911    -0.77   0.440    -.0877006     .038135
             LEV |   .1534906   .0765899     2.00   0.045     .0033284    .3036528
              MA |  -.0171832    .039293    -0.44   0.662    -.0942211    .0598546
             DPP |  -.0248049   .0594671    -0.42   0.677    -.1413962    .0917863
             RPP |  -.1013338   .0870105    -1.16   0.244    -.2719265     .069259
           PSIZE |   .0500369   .0181779     2.75   0.006     .0143974    .0856764
              DR |  -.0142629   .0173808    -0.82   0.412    -.0483397    .0198139
       Gov_score |   .0003102   .0003373     0.92   0.358    -.0003512    .0009715
    Sustain_Perf |   .0011279   .0005127     2.20   0.028     .0001227    .0021331
     Sust_Commit |   .0079999   .0161639     0.49   0.621    -.0236909    .0396908
                 |
              id |
              3  |   .0768793   .0915472     0.84   0.401    -.1026081    .2563667
              6  |   .2510733   .2196025     1.14   0.253    -.1794794    .6816259
              8  |   .2230446   .0895023     2.49   0.013     .0475664    .3985229
             10  |   .2780777   .0483471     5.75   0.000     .1832884     .372867
             12  |   .1085079   .0698411     1.55   0.120    -.0284226    .2454385
             13  |   .3877063    .093848     4.13   0.000     .2037079    .5717047
             14  |   .4627727   .1094081     4.23   0.000     .2482672    .6772782
             15  |    .835076    .088949     9.39   0.000     .6606826    1.009469
             16  |   .2096608   .0886564     2.36   0.018      .035841    .3834806
             17  |   .8564496   .0760335    11.26   0.000     .7073784    1.005521
             18  |  -.0750803   .0701352    -1.07   0.284    -.2125875    .0624269
             19  |   .2760072   .1006024     2.74   0.006     .0787662    .4732482
             20  |   .5141315   .1317224     3.90   0.000     .2558765    .7723865
             21  |   .5060567     .10118     5.00   0.000     .3076831    .7044303
             22  |   1.182202   .0703706    16.80   0.000     1.044233    1.320171
             24  |   .4078878   .1374321     2.97   0.003     .1384383    .6773373
             26  |  -.0875506   .0660016    -1.33   0.185    -.2169534    .0418523
             28  |   .0475152   .0647136     0.73   0.463    -.0793624    .1743927
             29  |   .1551686   .0917831     1.69   0.091    -.0247814    .3351186
             30  |   .3185186   .0959249     3.32   0.001     .1304483     .506589
             32  |   .1039583   .0671306     1.55   0.122     -.027658    .2355746
             35  |   .1501911    .087355     1.72   0.086     -.021077    .3214593
             40  |   .2972917   .1006934     2.95   0.003     .0998722    .4947113
             41  |   .3714094   .1728426     2.15   0.032     .0325342    .7102846
             42  |   .1620113   .0989343     1.64   0.102    -.0319594     .355982
             43  |  -.0279063   .0760293    -0.37   0.714    -.1769694    .1211569
             44  |   .5646908   .0945926     5.97   0.000     .3792325    .7501492
             45  |   .4045257   .1457874     2.77   0.006     .1186949    .6903565
             47  |   .0631079    .073268     0.86   0.389    -.0805414    .2067572
             50  |  -.0801545   .0909942    -0.88   0.378    -.2585579    .0982488
             51  |   .2019402   .0511246     3.95   0.000     .1017054     .302175
             52  |  -.0615122   .0662779    -0.93   0.353    -.1914565    .0684322
             53  |   .9020011   .1437957     6.27   0.000     .6200752    1.183927
             55  |  -.0200097     .09144    -0.22   0.827    -.1992869    .1592675
             56  |   .0360549   .0923699     0.39   0.696    -.1450455    .2171553
             57  |   .2298868   .0798969     2.88   0.004     .0732409    .3865326
             58  |  -.1481876   .0711771    -2.08   0.037    -.2877375   -.0086377
             61  |   .6765226   .0946321     7.15   0.000      .490987    .8620583
             62  |   .2721111    .087072     3.13   0.002     .1013977    .4428244
             63  |   .4976292   .0903594     5.51   0.000     .3204706    .6747878
             64  |   .4859941   .1073784     4.53   0.000      .275468    .6965202
             66  |  -.0395931   .0840909    -0.47   0.638    -.2044617    .1252756
             70  |  -.1959618   .0737214    -2.66   0.008       -.3405   -.0514236
     
                 |
            year |
           2005  |   .0082807   .0325949     0.25   0.799    -.0556249    .0721863
           2006  |   .0192298   .0320162     0.60   0.548    -.0435413    .0820008
           2007  |   .0387829   .0325025     1.19   0.233    -.0249414    .1025072
           2008  |   .0400047   .0449738     0.89   0.374    -.0481709    .1281803
           2009  |   .0540236    .034973     1.54   0.122    -.0145444    .1225917
           2010  |   .0595171   .0372905     1.60   0.111    -.0135946    .1326287
           2011  |   .0674747   .0426429     1.58   0.114     -.016131    .1510804
           2012  |    .083411   .0504951     1.65   0.099    -.0155897    .1824117
           2013  |   .1160374   .0429438     2.70   0.007     .0318418     .200233
           2014  |   .0968027   .0515162     1.88   0.060    -.0042001    .1978054
           2015  |   .1064947    .049516     2.15   0.032     .0094137    .2035758
           2016  |   .1348759   .0539288     2.50   0.012     .0291431    .2406087
           2017  |    .153104   .0594751     2.57   0.010      .036497     .269711
           2018  |   .1841829   .0566266     3.25   0.001     .0731607    .2952051
           2019  |   .2249801   .0674822     3.33   0.001     .0926745    .3572857
           2020  |    .234567   .0796006     2.95   0.003      .078502     .390632
           2021  |   .2408054   .0773085     3.11   0.002     .0892344    .3923764
           2022  |   .2706711   .0777777     3.48   0.001     .1181802    .4231621
                 |
           _cons |  -.7063311   .1920645    -3.68   0.000    -1.082893   -.3297693
    ------------------------------------------------------------------------------
    F test of excluded instruments:
      F(  1,  3730) =    38.95
      Prob > F      =   0.0000
    Sanderson-Windmeijer multivariate F test of excluded instruments:
      F(  1,  3730) =    38.95
      Prob > F      =   0.0000
    
    
    
    Summary results for first-stage regressions
    -------------------------------------------
    
                                               (Underid)            (Weak id)
    Variable     | F(  1,  3730)  P-val | SW Chi-sq(  1) P-val | SW F(  1,  3730)
    CSO          |      38.95    0.0000 |       42.31   0.0000 |       38.95
    
    NB: first-stage test statistics heteroskedasticity-robust
    
    Stock-Yogo weak ID F test critical values for single endogenous regressor:
                                       10% maximal IV size             16.38
                                       15% maximal IV size              8.96
                                       20% maximal IV size              6.66
                                       25% maximal IV size              5.53
    Source: Stock-Yogo (2005).  Reproduced by permission.
    NB: Critical values are for i.i.d. errors only.
    
    Underidentification test
    Ho: matrix of reduced form coefficients has rank=K1-1 (underidentified)
    Ha: matrix has rank=K1 (identified)
    Kleibergen-Paap rk LM statistic          Chi-sq(1)=41.78    P-val=0.0000
    
    Weak identification test
    Ho: equation is weakly identified
    Cragg-Donald Wald F statistic                                      52.18
    Kleibergen-Paap Wald rk F statistic                                38.95
    
    Stock-Yogo weak ID test critical values for K1=1 and L1=1:
                                       10% maximal IV size             16.38
                                       15% maximal IV size              8.96
                                       20% maximal IV size              6.66
                                       25% maximal IV size              5.53
    Source: Stock-Yogo (2005).  Reproduced by permission.
    NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.
    
    Weak-instrument-robust inference
    Tests of joint significance of endogenous regressors B1 in main equation
    Ho: B1=0 and orthogonality conditions are valid
    Anderson-Rubin Wald test           F(1,3730)=      9.34     P-val=0.0023
    Anderson-Rubin Wald test           Chi-sq(1)=     10.14     P-val=0.0014
    Stock-Wright LM S statistic        Chi-sq(1)=         .     P-val=     .
    
    NB: Underidentification, weak identification and weak-identification-robust
        test statistics heteroskedasticity-robust
    
    Number of observations               N  =       4051
    Number of regressors                 K  =        321
    Number of endogenous regressors      K1 =          1
    Number of instruments                L  =        321
    Number of excluded instruments       L1 =          1
    
    IV (2SLS) estimation
    --------------------
    
    Estimates efficient for homoskedasticity only
    Statistics robust to heteroskedasticity
    
                                                          Number of obs =     4051
                                                          F(320,  3730) =   410.26
                                                          Prob > F      =   0.0000
    Total (centered) SS     =  153.8218013                Centered R2   =   0.6665
    Total (uncentered) SS   =  1071.865387                Uncentered R2 =   0.9521
    Residual SS             =  51.30371339                Root MSE      =    .1125
    
    ------------------------------------------------------------------------------
                 |               Robust
          EQUITY | Coefficient  std. err.      z    P>|z|     [95% conf. interval]
    -------------+----------------------------------------------------------------
             CSO |  -.1729897   .0584959    -2.96   0.003    -.2876396   -.0583398
           FSIZE |   .0123795   .0080366     1.54   0.123    -.0033721     .028131
           OP_CF |     -.0683    .065158    -1.05   0.295    -.1960073    .0594074
          SD_OCF |  -.1461356   .1487631    -0.98   0.326    -.4377059    .1454348
             TAX |  -.0058738   .0077634    -0.76   0.449    -.0210899    .0093422
              BM |  -.0258302   .0120476    -2.14   0.032    -.0494431   -.0022173
             LEV |   -.020226   .0316568    -0.64   0.523    -.0822721    .0418201
              MA |   .0038532   .0145438     0.26   0.791    -.0246522    .0323585
             DPP |   .1396388   .0246513     5.66   0.000     .0913231    .1879546
             RPP |   .0998273   .0351349     2.84   0.004     .0309642    .1686904
           PSIZE |   .0209352   .0090069     2.32   0.020     .0032821    .0385884
              DR |   .0404173   .0071513     5.65   0.000      .026401    .0544337
       Gov_score |  -.0000358   .0001254    -0.29   0.775    -.0002816    .0002099
    Sustain_Perf |   -.000039   .0002055    -0.19   0.850    -.0004418    .0003639
     Sust_Commit |  -.0079053   .0065138    -1.21   0.225    -.0206721    .0048615
                 |
              id |
              3  |   -.196843   .0440745    -4.47   0.000    -.2832275   -.1104585
              6  |  -.2818958   .0703924    -4.00   0.000    -.4198623   -.1439292
              8  |  -.1530946   .0370148    -4.14   0.000    -.2256422   -.0805469
             10  |  -.0958093   .0346259    -2.77   0.006    -.1636748   -.0279439
             12  |  -.0715845    .050358    -1.42   0.155    -.1702843    .0271153
             13  |  -.1566972   .0515031    -3.04   0.002    -.2576414   -.0557529
             14  |  -.0983788   .0501605    -1.96   0.050    -.1966917    -.000066
             15  |   .0873498   .0690924     1.26   0.206    -.0480688    .2227685
             16  |  -.1577911    .042644    -3.70   0.000    -.2413718   -.0742103
             17  |  -.1926949   .0632552    -3.05   0.002    -.3166729    -.068717
             18  |  -.2842097   .0337847    -8.41   0.000    -.3504264    -.217993
             19  |  -.2289776   .0464038    -4.93   0.000    -.3199275   -.1380278
             20  |    -.27578   .0534121    -5.16   0.000    -.3804659   -.1710942
             21  |  -.3130877   .0490545    -6.38   0.000    -.4092326   -.2169427
             22  |    .158974   .0758572     2.10   0.036     .0102966    .3076515
             24  |  -.1280691   .0489432    -2.62   0.009     -.223996   -.0321423
             26  |  -.2706416   .0384196    -7.04   0.000    -.3459426   -.1953406
             28  |  -.5033943   .0452778   -11.12   0.000    -.5921372   -.4146513
             29  |  -.2097703   .0375714    -5.58   0.000     -.283409   -.1361317
             30  |  -.3230224   .0348629    -9.27   0.000    -.3913524   -.2546924
             32  |  -.1517933   .0331707    -4.58   0.000    -.2168067   -.0867798
             35  |  -.2780842   .0480705    -5.78   0.000    -.3723006   -.1838678
             40  |  -.3798279   .0493405    -7.70   0.000    -.4765335   -.2831223
             41  |  -.1239616   .0599064    -2.07   0.039    -.2413759   -.0065473
             42  |  -.2560138   .0408748    -6.26   0.000    -.3361269   -.1759008
             43  |  -.1209293   .0290472    -4.16   0.000    -.1778607   -.0639979
             44  |  -.0436356   .0541652    -0.81   0.420    -.1497974    .0625262
             45  |   -.249741    .043053    -5.80   0.000    -.3341234   -.1653586
             47  |   .0237943   .0339059     0.70   0.483      -.04266    .0902485
             50  |   -.541778    .060014    -9.03   0.000    -.6594032   -.4241528
             51  |   -.150783   .0442984    -3.40   0.001    -.2376062   -.0639598
             52  |  -.1356262   .0330178    -4.11   0.000      -.20034   -.0709124
             53  |  -.1439585   .0639517    -2.25   0.024    -.2693015   -.0186155
             55  |  -.4241971   .0417459   -10.16   0.000    -.5060176   -.3423766
             56  |  -.2505044    .043135    -5.81   0.000    -.3350474   -.1659613
             57  |  -.3619691   .0323835   -11.18   0.000    -.4254397   -.2984985
             58  |  -.1241552   .0265477    -4.68   0.000    -.1761878   -.0721226
             61  |  -.1885559   .0525321    -3.59   0.000     -.291517   -.0855948
             62  |   .1806477   .0518632     3.48   0.000     .0789976    .2822977
             63  |  -.0641431   .0580543    -1.10   0.269    -.1779275    .0496413
             64  |   -.738005    .060382   -12.22   0.000    -.8563515   -.6196585
             66  |   -.229681   .0357134    -6.43   0.000    -.2996779    -.159684
             70  |  -.2268429   .0377784    -6.00   0.000    -.3008872   -.1527985
     
                 |
            year |
           2005  |    .001583   .0130419     0.12   0.903    -.0239788    .0271447
           2006  |  -.0101608   .0133865    -0.76   0.448    -.0363978    .0160762
           2007  |   -.038981   .0135934    -2.87   0.004    -.0656236   -.0123384
           2008  |  -.0813137   .0190981    -4.26   0.000    -.1187454   -.0438821
           2009  |  -.0907544   .0153258    -5.92   0.000    -.1207924   -.0607163
           2010  |  -.0699317   .0160638    -4.35   0.000    -.1014162   -.0384471
           2011  |  -.0766685   .0182318    -4.21   0.000    -.1124023   -.0409348
           2012  |  -.0652068    .021339    -3.06   0.002    -.1070304   -.0233832
           2013  |  -.0893286   .0197775    -4.52   0.000    -.1280917   -.0505655
           2014  |    -.08869   .0221876    -4.00   0.000    -.1321769   -.0452031
           2015  |  -.0976987    .022044    -4.43   0.000    -.1409042   -.0544932
           2016  |  -.0936859   .0249886    -3.75   0.000    -.1426626   -.0447092
           2017  |  -.1017087   .0274862    -3.70   0.000    -.1555806   -.0478368
           2018  |  -.1531187   .0276838    -5.53   0.000     -.207378   -.0988595
           2019  |  -.1285871   .0330575    -3.89   0.000    -.1933786   -.0637956
           2020  |  -.0980854   .0372913    -2.63   0.009     -.171175   -.0249959
           2021  |  -.1394551   .0371555    -3.75   0.000    -.2122785   -.0666318
           2022  |  -.2075709   .0370445    -5.60   0.000    -.2801768   -.1349649
                 |
           _cons |   .3504631   .0915978     3.83   0.000     .1709347    .5299916
    ------------------------------------------------------------------------------
    Underidentification test (Kleibergen-Paap rk LM statistic):             41.775
                                                       Chi-sq(1) P-val =    0.0000
    ------------------------------------------------------------------------------
    Weak identification test (Cragg-Donald Wald F statistic):               52.182
                             (Kleibergen-Paap rk Wald F statistic):         38.954
    Stock-Yogo weak ID test critical values: 10% maximal IV size             16.38
                                             15% maximal IV size              8.96
                                             20% maximal IV size              6.66
                                             25% maximal IV size              5.53
    Source: Stock-Yogo (2005).  Reproduced by permission.
    NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.
    ------------------------------------------------------------------------------
    Warning: estimated covariance matrix of moment conditions not of full rank.
             overidentification statistic not reported, and standard errors and
             model tests should be interpreted with caution.
    Possible causes:
             singleton dummy variable (dummy with one 1 and N-1 0s or vice versa)
    partial option may address problem.
    ------------------------------------------------------------------------------
    Instrumented:         CSO
    Included instruments: FSIZE OP_CF SD_OCF TAX BM LEV MA DPP RPP PSIZE DR
                          Gov_score Sustain_Perf Sust_Commit 3.id 6.id 8.id 10.id
                          12.id 13.id 14.id 15.id 16.id 17.id 18.id 19.id 20.id
                          21.id 22.id 24.id 26.id 28.id 29.id 30.id 32.id 35.id
                          40.id 41.id 42.id 43.id 44.id 45.id 47.id 50.id 51.id
                          52.id 53.id 55.id 56.id 57.id 58.id 61.id 62.id 63.id
                          64.id 66.id 70.id 76.id 78.id 79.id 81.id 82.id 85.id
                          88.id 91.id 93.id 94.id 95.id 97.id 98.id 99.id 100.id
                          101.id 102.id 104.id 106.id 107.id 109.id 110.id 111.id
                          114.id 117.id 121.id 122.id 123.id 124.id 126.id 127.id
                          128.id 130.id 131.id 133.id 134.id 135.id 139.id 140.id
                          144.id 145.id 147.id 148.id 149.id 151.id 152.id 156.id
                          157.id 158.id 159.id 160.id 161.id 162.id 163.id 169.id
                          170.id 172.id 173.id 175.id 176.id 177.id 181.id 184.id
                          186.id 187.id 193.id 200.id 201.id 202.id 206.id 207.id
                          208.id 209.id 210.id 212.id 215.id 217.id 218.id 219.id
                          222.id 223.id 224.id 227.id 228.id 229.id 230.id 233.id
                          235.id 236.id 237.id 239.id 240.id 243.id 246.id 247.id
                          248.id 249.id 253.id 254.id 255.id 257.id 259.id 261.id
                          262.id 263.id 264.id 265.id 266.id 268.id 269.id 270.id
                          271.id 272.id 273.id 274.id 277.id 278.id 279.id 280.id
                          281.id 282.id 283.id 284.id 287.id 290.id 291.id 293.id
                          296.id 300.id 301.id 302.id 303.id 307.id 309.id 310.id
                          311.id 313.id 315.id 316.id 319.id 321.id 322.id 325.id
                          326.id 333.id 334.id 335.id 337.id 339.id 341.id 342.id
                          344.id 348.id 350.id 351.id 354.id 355.id 356.id 357.id
                          360.id 361.id 362.id 365.id 366.id 368.id 369.id 370.id
                          371.id 372.id 374.id 376.id 379.id 380.id 381.id 382.id
                          384.id 385.id 386.id 388.id 399.id 404.id 405.id 409.id
                          414.id 416.id 417.id 419.id 420.id 421.id 423.id 425.id
                          426.id 427.id 429.id 431.id 432.id 435.id 436.id 437.id
                          438.id 439.id 440.id 442.id 443.id 444.id 445.id 446.id
                          447.id 448.id 454.id 457.id 458.id 460.id 461.id 463.id
                          465.id 468.id 469.id 471.id 472.id 473.id 475.id 476.id
                          481.id 482.id 483.id 484.id 485.id 486.id 489.id 491.id
                          492.id 494.id 497.id 499.id 500.id 502.id 503.id 504.id
                          505.id 506.id 507.id 509.id 510.id 2005.year 2006.year
                          2007.year 2008.year 2009.year 2010.year 2011.year
                          2012.year 2013.year 2014.year 2015.year 2016.year
                          2017.year 2018.year 2019.year 2020.year 2021.year
                          2022.year
    Excluded instruments: Instrumental
    ------------------------------------------------------------------------------
    
    . 
    end of do-file

    Comment


    • #3
      Hussein: You shouldn't be putting in the dummy variables for id. if you use ivreghdfe (which you have to install: ssc install ivreghdfe). Then you can absorb id and year and focus on the parameters you care about. That should clear up the problem. Also, cluster the standard errors at the id level to allow serial correlation and heteroskedasticity.

      Comment


      • #4
        thanks Jeff for your advice

        plesae i have two enquires if you can advice me on how to solve them

        1. i want to identify this singleton groups detected. 7 observation(s) so i can delete them in order to have same same number of observations in main regression and 2SLS
        2. the Endogeneity test does not appear for me , I'm not sure why , is this is because of singleton groups and is there a way to display the Endogeneity test results





        HTML Code:
        . ivreghdfe EQUITY FSIZE OP_CF SD_OCF TAX  BM LEV MA DPP RPP PSIZE DR Gov_score Sustain_Perf Sust_Commit (CSO = Instrumental),  absorb(id year)
        (dropped 7 singleton observations)
        (MWFE estimator converged in 7 iterations)
        
        IV (2SLS) estimation
        --------------------
        
        Estimates efficient for homoskedasticity only
        Statistics consistent for homoskedasticity only
        
                                                              Number of obs =     4044
                                                              F( 15,  3730) =    10.13
                                                              Prob > F      =   0.0000
        Total (centered) SS     =  46.32975885                Centered R2   =  -0.1074
        Total (uncentered) SS   =  46.32975885                Uncentered R2 =  -0.1074
        Residual SS             =  51.30371339                Root MSE      =    .1173
        
        ------------------------------------------------------------------------------
              EQUITY | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
        -------------+----------------------------------------------------------------
                 CSO |  -.1729897   .0555421    -3.11   0.002    -.2818856   -.0640939
               FSIZE |   .0123795   .0077931     1.59   0.112    -.0028997    .0276586
               OP_CF |     -.0683    .057869    -1.18   0.238    -.1817579     .045158
              SD_OCF |  -.1461356   .1421566    -1.03   0.304    -.4248477    .1325766
                 TAX |  -.0058738   .0083983    -0.70   0.484    -.0223396    .0105919
                  BM |  -.0258302   .0128145    -2.02   0.044    -.0509542   -.0007062
                 LEV |   -.020226   .0296631    -0.68   0.495    -.0783833    .0379314
                  MA |   .0038532   .0164687     0.23   0.815    -.0284353    .0361417
                 DPP |   .1396388   .0229292     6.09   0.000     .0946838    .1845938
                 RPP |   .0998273   .0324568     3.08   0.002     .0361924    .1634622
               PSIZE |   .0209352   .0070038     2.99   0.003     .0072035     .034667
                  DR |   .0404173    .006344     6.37   0.000     .0279792    .0528555
           Gov_score |  -.0000358   .0001322    -0.27   0.786     -.000295    .0002233
        Sustain_Perf |   -.000039   .0002106    -0.19   0.853    -.0004519    .0003739
         Sust_Commit |  -.0079053   .0065018    -1.22   0.224    -.0206528    .0048421
        ------------------------------------------------------------------------------
        Underidentification test (Anderson canon. corr. LM statistic):          55.794
                                                           Chi-sq(1) P-val =    0.0000
        ------------------------------------------------------------------------------
        Weak identification test (Cragg-Donald Wald F statistic):               52.182
        Stock-Yogo weak ID test critical values: 10% maximal IV size             16.38
                                                 15% maximal IV size              8.96
                                                 20% maximal IV size              6.66
                                                 25% maximal IV size              5.53
        Source: Stock-Yogo (2005).  Reproduced by permission.
        ------------------------------------------------------------------------------
        Sargan statistic (overidentification test of all instruments):           0.000
                                                         (equation exactly identified)
        ------------------------------------------------------------------------------
        Instrumented:         CSO
        Included instruments: FSIZE OP_CF SD_OCF TAX BM LEV MA DPP RPP PSIZE DR
                              Gov_score Sustain_Perf Sust_Commit
        Excluded instruments: Instrumental
        Partialled-out:       _cons
                              nb: total SS, model F and R2s are after partialling-out;
                                  any small-sample adjustments include partialled-out
                                  variables in regressor count K
        ------------------------------------------------------------------------------
        
        Absorbed degrees of freedom:
        -----------------------------------------------------+
         Absorbed FE | Categories  - Redundant  = Num. Coefs |
        -------------+---------------------------------------|
                  id |       281           0         281     |
                year |        19           1          18     |
        -----------------------------------------------------+
        
        . ivreghdfe EQUITY FSIZE OP_CF SD_OCF TAX  BM LEV MA DPP RPP PSIZE DR Gov_score Sustain_Perf Sust_Commit (CSO = Instrumental),  absorb(id year) cluster(id)
        (dropped 7 singleton observations)
        (MWFE estimator converged in 7 iterations)
        
        IV (2SLS) estimation
        --------------------
        
        Estimates efficient for homoskedasticity only
        Statistics robust to heteroskedasticity and clustering on id
        
        Number of clusters (id) =          281                Number of obs =     4044
                                                              F( 15,   280) =     3.73
                                                              Prob > F      =   0.0000
        Total (centered) SS     =  46.32975885                Centered R2   =  -0.1074
        Total (uncentered) SS   =  46.32975885                Uncentered R2 =  -0.1074
        Residual SS             =  51.30371339                Root MSE      =    .1131
        
        ------------------------------------------------------------------------------
                     |               Robust
              EQUITY | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
        -------------+----------------------------------------------------------------
                 CSO |  -.1729897   .1334499    -1.30   0.196    -.4356823    .0897028
               FSIZE |   .0123795   .0164212     0.75   0.452    -.0199452    .0447041
               OP_CF |     -.0683   .1141748    -0.60   0.550    -.2930498    .1564499
              SD_OCF |  -.1461356   .2730804    -0.54   0.593    -.6836868    .3914157
                 TAX |  -.0058738   .0088853    -0.66   0.509    -.0233642    .0116165
                  BM |  -.0258302   .0219067    -1.18   0.239     -.068953    .0172925
                 LEV |   -.020226    .061356    -0.33   0.742    -.1410035    .1005516
                  MA |   .0038532   .0149517     0.26   0.797    -.0255788    .0332852
                 DPP |   .1396388   .0526328     2.65   0.008     .0360327     .243245
                 RPP |   .0998273   .0340293     2.93   0.004     .0328416     .166813
               PSIZE |   .0209352   .0169088     1.24   0.217    -.0123494    .0542198
                  DR |   .0404173   .0107475     3.76   0.000     .0192611    .0615736
           Gov_score |  -.0000358   .0002086    -0.17   0.864    -.0004465    .0003748
        Sustain_Perf |   -.000039   .0003703    -0.11   0.916     -.000768      .00069
         Sust_Commit |  -.0079053   .0110412    -0.72   0.475    -.0296396     .013829
        ------------------------------------------------------------------------------
        Underidentification test (Kleibergen-Paap rk LM statistic):              9.261
                                                           Chi-sq(1) P-val =    0.0023
        ------------------------------------------------------------------------------
        Weak identification test (Cragg-Donald Wald F statistic):               56.099
                                 (Kleibergen-Paap rk Wald F statistic):          9.702
        Stock-Yogo weak ID test critical values: 10% maximal IV size             16.38
                                                 15% maximal IV size              8.96
                                                 20% maximal IV size              6.66
                                                 25% maximal IV size              5.53
        Source: Stock-Yogo (2005).  Reproduced by permission.
        NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.
        ------------------------------------------------------------------------------
        Hansen J statistic (overidentification test of all instruments):         0.000
                                                         (equation exactly identified)
        ------------------------------------------------------------------------------
        Instrumented:         CSO
        Included instruments: FSIZE OP_CF SD_OCF TAX BM LEV MA DPP RPP PSIZE DR
                              Gov_score Sustain_Perf Sust_Commit
        Excluded instruments: Instrumental
        Partialled-out:       _cons
                              nb: total SS, model F and R2s are after partialling-out;
                                  any small-sample adjustments include partialled-out
                                  variables in regressor count K
        ------------------------------------------------------------------------------
        
        Absorbed degrees of freedom:
        -----------------------------------------------------+
         Absorbed FE | Categories  - Redundant  = Num. Coefs |
        -------------+---------------------------------------|
                  id |       281         281           0    *|
                year |        19           0          19     |
        -----------------------------------------------------+
        * = FE nested within cluster; treated as redundant for DoF computation
        
        . 

        Comment


        • #5
          Maybe this will work:

          Code:
          gen used = e(sample)
          egen tobs = sum(used), by(id)
          list id if tobs == 1
          The test for endogeneity probably has to be done by hand. You can look at my paper with Riju Joshi. Basically, you explicitly use xtreg, fe to do the first stage. Save the FE residuals using the "e" option. Then add those residuals in the model estimated in the second stage, again using xtreg, fe. The test is on the first-stage residuals.

          Code:
          xtreg y2 x1 ... xK z1 ... zL if used, fe
          predict v2hat, e
          xtreg y1 y2 x1 ... xK v2hat if used, fe vce(cluster id)

          Comment

          Working...
          X