Dear Statalist,
I have been reading a lot of time about how to deal with my problem, but I could not find a solution to my problem. I am trying to estimate the next equation for my sample of firms:
exporter is a dummy variable that takes value of 1 when the firm is an exporter, 0 otherwise. corr11 which is my main independent variable is also a dummy variable that takes value of 1 when the firm consider the corruption an obstacle for doing business, 0 otherwise. j2 is a continuous variables that measures the time that the firm spends in bureaucracy stuffs. However, an according to the literature of my field, corr11 is potentially a endogenous regressor, as a consequence I want to estimate my model by using IV approach. As instrument for corr11 I have the variable mean_indreg_corr which is a continuos variable, and for the interaction term corr11*j2 I am using as an instrument mean_indreg_corr*j2. With all this on hand I show you the code that I am using:
However, in other posts I have read that for using ivprobit the endogenous variable must be a continuous one, so, is the code that am I using incorrect? In afirmative case, what method do you recommend me?
Here I show you an extract of my data:
Thank you!
Ibai
I have been reading a lot of time about how to deal with my problem, but I could not find a solution to my problem. I am trying to estimate the next equation for my sample of firms:
Code:
exporter = b0 + b1*corr11 + b2*j2 + b3*corr11*j2 + controls + u
Code:
gen corr11Xj2 = corr11#c.j2 ivprobit exporter (corr11 corr11Xj2 = c.mean_indreg_corr c.mean_indreg_corr#c.j2) c.j2 c.lnwk14 i.year [pw = wt], vce(cl indus_region) first
Here I show you an extract of my data:
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float(exporter corr11) double j2 float lnwk14 double year float indus_region 0 1 0 1.6739764 2019 8055 1 0 . 6.109248 2019 5040 0 0 0 2.0037298 2019 5920 0 1 15 1.94591 2019 8064 0 1 . 3.295837 2019 5376 0 0 0 2.0794415 2013 12888 0 1 2 1.9924302 2013 8064 0 0 0 2.70805 2013 8592 0 1 0 1.7917595 2013 8592 0 0 . 5.043425 2013 6360 0 1 3 4.3820267 2013 5376 1 0 . 4.060443 2008 5550 1 1 3 4.1536613 2008 5040 0 . . 3.970292 2008 6360 1 0 . 3.433987 2008 6784 0 1 . 2.0794415 2008 20256 0 1 20 1.94591 2008 8064 0 0 . 2.782951 2008 5550 0 0 0 4.0943446 2008 5920 . 0 0 3.545779 2013 5550 0 0 0 3.135494 2019 13504 0 1 . 3.2834144 2008 5376 0 1 . 2.772589 2008 5040 0 1 . 3.970292 2008 5040 1 1 . 5.135798 2019 12660 0 0 0 2.944439 2019 12660 0 1 0 1.0986123 2013 12888 0 1 20 2.890372 2013 8592 0 1 . 3.320228 2019 5376 0 1 . 1.8458267 2008 8064 0 1 15 3.3322046 2008 5040 0 0 15 4.106767 2008 20256 1 0 0 4.3609734 2008 8055 0 0 . 4.976734 2013 20256 0 0 0 3.218876 2013 13504 0 0 5 3.84303 2008 20256 0 1 9 2.564949 2008 8064 1 1 . 3.0445225 2019 12660 0 1 0 1.609438 2008 8055 0 0 0 3.295837 2008 20256 0 0 0 5.351858 2013 20256 0 0 . 1.94591 2013 6360 0 1 0 2.1972246 2008 5376 0 1 0 2.3025851 2008 20256 0 0 . 3.0910425 2008 6360 0 1 0 3.64632 2008 8055 0 0 0 2.1972246 2008 8880 0 1 0 3.0910425 2008 8055 0 1 0 4.941642 2008 5376 0 1 . 2.484907 2008 5040 0 0 0 3.560099 2008 12660 0 0 0 1.609438 2008 20256 0 0 0 1.7917595 2008 8880 0 1 . 1.94591 2008 8064 0 0 0 1.7917595 2008 5920 0 0 . 5.147494 2008 6360 0 . 0 3.8066626 2008 8592 0 1 0 3.218876 2008 5040 0 0 . 2.0794415 2013 5040 1 1 0 1.9694406 2019 12660 1 1 . 4.1108737 2008 20256 0 0 0 3.6888795 2008 12660 0 1 . 5.309916 2008 5376 1 0 5 4.6051702 2008 12660 0 0 0 4.1271343 2008 8592 0 1 0 2.833213 2008 13504 0 0 0 2.3353748 2008 20256 0 0 0 2.0794415 2008 12888 0 1 0 . 2008 13504 1 . 15 4.787492 2008 8592 0 1 1 2.564949 2008 8064 1 0 0 6.429719 2008 8055 0 1 0 5.32301 2008 8055 0 1 0 2.833213 2008 5376 0 1 . 4.029806 2008 5040 0 0 . 2.890372 2008 5920 1 0 0 2.944439 2008 5550 0 0 0 2.70805 2008 13504 0 1 . 6.231137 2008 20256 0 1 . 4.3820267 2008 5376 0 0 0 2.3025851 2008 5550 0 0 0 2.3025851 2008 10176 0 0 0 1.94591 2008 6784 0 . . 3.218876 2008 13504 0 0 0 1.94591 2008 20256 0 1 . 4.189655 2008 20256 0 0 . 3.8066626 2008 6784 0 0 0 2.833213 2008 8592 0 0 0 3.465736 2008 12660 1 0 0 3.218876 2008 5550 0 0 . . 2008 12660 1 1 8 3.135494 2013 13504 1 0 15 4.5849676 2008 13504 0 1 0 2.995732 2008 8055 1 1 0 3.555348 2008 5920 1 1 0 .6931472 2008 8592 0 0 0 3.8501475 2008 12660 1 1 0 3.5263605 2019 5920 1 0 0 2.8716795 2008 5550 0 1 0 2.3025851 2008 5040 end label values j2 J2 label def J2 0 "No time was spent", modify
Thank you!
Ibai
Comment