Dear all,
I estimate a panel Logit model on the covariates of transition from work into retirement (for a sample aged 50yo and over) using data from the SHARE survey (Survey of Health, Ageing and Retirement in Europe). Covariates include: one's risk of poverty in wave t-1, education, sex, age groups, equivalised household size, self-reported health status, work type, marital status, and extra working household member.
I am using -margins- command after -xtlogit-, but Stata reports that it cannot estimate it for categorical variables such as sex, age groups, marital status and work type. Why this happens? Does someone know how, and if, this could be fixed?
Thanks!
I estimate a panel Logit model on the covariates of transition from work into retirement (for a sample aged 50yo and over) using data from the SHARE survey (Survey of Health, Ageing and Retirement in Europe). Covariates include: one's risk of poverty in wave t-1, education, sex, age groups, equivalised household size, self-reported health status, work type, marital status, and extra working household member.
I am using -margins- command after -xtlogit-, but Stata reports that it cannot estimate it for categorical variables such as sex, age groups, marital status and work type. Why this happens? Does someone know how, and if, this could be fixed?
Thanks!
Code:
xtlogit trans $cov_pov_risk2 i.wave i.country if insample==1, vce(cl mergeid) note: 59.country != 0 predicts failure perfectly; 59.country omitted and 18 obs not used. Fitting comparison model: Iteration 0: Log pseudolikelihood = -19819.09 Iteration 1: Log pseudolikelihood = -11436.338 Iteration 2: Log pseudolikelihood = -10233.414 Iteration 3: Log pseudolikelihood = -10039.908 Iteration 4: Log pseudolikelihood = -10034.707 Iteration 5: Log pseudolikelihood = -10034.671 Iteration 6: Log pseudolikelihood = -10034.671 Fitting full model: tau = 0.0 Log pseudolikelihood = -10034.671 tau = 0.1 Log pseudolikelihood = -10035.455 Iteration 0: Log pseudolikelihood = -10035.455 Iteration 1: Log pseudolikelihood = -10033.58 Iteration 2: Log pseudolikelihood = -10033.576 Iteration 3: Log pseudolikelihood = -10033.576 Calculating robust standard errors ... Random-effects logistic regression Number of obs = 41,108 Group variable: panel Number of groups = 21,691 Random effects u_i ~ Gaussian Obs per group: min = 1 avg = 1.9 max = 6 Integration method: mvaghermite Integration pts. = 12 Wald chi2(44) = 3775.88 Log pseudolikelihood = -10033.576 Prob > chi2 = 0.0000 (Std. err. adjusted for 21,691 clusters in mergeid) -------------------------------------------------------------------------------------------- | Robust trans | Coefficient std. err. z P>|z| [95% conf. interval] ---------------------------+---------------------------------------------------------------- pov_risk_t_1 | -.166522 .0554566 -3.00 0.003 -.2752149 -.0578291 educ | -.0480365 .0051522 -9.32 0.000 -.0581347 -.0379383 male | -.0036535 .0403659 -0.09 0.928 -.0827692 .0754621 | age_grp | 55-59yo | 1.583443 .1441991 10.98 0.000 1.300818 1.866068 60-64yo | 3.665995 .1458866 25.13 0.000 3.380062 3.951927 65-69yo | 5.52666 .163362 33.83 0.000 5.206477 5.846844 70-74yo | 5.521011 .1849095 29.86 0.000 5.158595 5.883426 75+yo | 5.636382 .2081366 27.08 0.000 5.228442 6.044323 | hhsize_eqh_sr | -.688005 .0841462 -8.18 0.000 -.8529286 -.5230814 sphus_poor | .2017044 .046549 4.33 0.000 .1104699 .2929388 | work_type | 2. Public sector employee | -.0362042 .0449182 -0.81 0.420 -.1242423 .0518339 3. Self-employed | -.3962109 .0567451 -6.98 0.000 -.5074292 -.2849926 | marital_status | 2. Never married | .5132168 .0761686 6.74 0.000 .3639292 .6625045 3. Divorced/widowed | .6816849 .0563723 12.09 0.000 .5711973 .7921726 | hhmemb_work | 3.681871 .0693236 53.11 0.000 3.545999 3.817743 | wave | Wave 4 (2011/12) | .3374674 .0840367 4.02 0.000 .1727584 .5021764 Wave 5 (2013) | -.5325465 .0808804 -6.58 0.000 -.6910691 -.3740239 Wave 6 (2015) | -.7306933 .0770652 -9.48 0.000 -.8817383 -.5796483 Wave 7 (2017/18) | -.7648985 .0768926 -9.95 0.000 -.9156052 -.6141918 Wave 8 (2019/20) | -.6286996 .0854089 -7.36 0.000 -.7960979 -.4613014 | country | Germany | -1.132057 .1076993 -10.51 0.000 -1.343143 -.9209697 Sweden | -1.45545 .101693 -14.31 0.000 -1.654765 -1.256136 Netherlands | -1.05716 .2297129 -4.60 0.000 -1.507389 -.6069306 Spain | -1.180997 .1105569 -10.68 0.000 -1.397684 -.9643094 Italy | -.9605274 .1118705 -8.59 0.000 -1.179789 -.7412653 France | -.4165643 .1011144 -4.12 0.000 -.6147449 -.2183838 Denmark | -1.660126 .1037472 -16.00 0.000 -1.863466 -1.456785 Greece | -1.926768 .1433675 -13.44 0.000 -2.207763 -1.645773 Belgium | -.5056569 .0967097 -5.23 0.000 -.6952045 -.3161094 Czech Republic | .0129918 .1045713 0.12 0.901 -.1919641 .2179477 Poland | -.4235347 .1624915 -2.61 0.009 -.7420123 -.1050572 Luxembourg | .796625 .164644 4.84 0.000 .4739288 1.119321 Hungary | -.2479898 .3837071 -0.65 0.518 -1.000042 .5040623 Portugal | -1.773635 .4457738 -3.98 0.000 -2.647336 -.8999345 Slovenia | .2080824 .1367434 1.52 0.128 -.0599297 .4760945 Estonia | -2.076609 .108053 -19.22 0.000 -2.288389 -1.864829 Croatia | -.9230151 .202877 -4.55 0.000 -1.320647 -.5253835 Lithuania | -1.530839 .3172675 -4.83 0.000 -2.152672 -.9090057 Bulgaria | -1.756475 .4795923 -3.66 0.000 -2.696459 -.8164917 Cyprus | -1.829712 .6442928 -2.84 0.005 -3.092503 -.5669214 Finland | -1.37054 .3897093 -3.52 0.000 -2.134356 -.6067239 Latvia | -2.485857 .6674459 -3.72 0.000 -3.794027 -1.177687 Malta | 0 (empty) Romania | -1.502531 .6942346 -2.16 0.030 -2.863206 -.1418559 Slovakia | -1.277278 .785677 -1.63 0.104 -2.817177 .2626202 | _cons | -2.592475 .2180242 -11.89 0.000 -3.019795 -2.165155 ---------------------------+---------------------------------------------------------------- /lnsig2u | -2.120559 .6699549 -3.433647 -.8074715 ---------------------------+---------------------------------------------------------------- sigma_u | .346359 .1160225 .1796359 .6678206 rho | .0351819 .0227411 .0097133 .1193795 --------------------------------------------------------------------------------------------
Code:
margins, dydx(pov_risk_t_1 educ i.male i.age_grp hhsize_eqh_sr sphus_poor i.work_type i.marital_status hhmemb_work) post Average marginal effects Number of obs = 11,875 Model VCE: Bootstrap Expression: Pr(trans|fixed effect is 0), predict(pu0) dy/dx wrt: pov_risk_t_1 educ 1.male 2.age_grp 3.age_grp 4.age_grp 5.age_grp 6.age_grp hhsize_eqh_sr sphus_poor 2.work_type 3.work_type 4.marital_status 5.marital_status hhmemb_work -------------------------------------------------------------------------------------------- | Delta-method | dy/dx std. err. z P>|z| [95% conf. interval] ---------------------------+---------------------------------------------------------------- pov_risk_t_1 | .0097081 .0068568 1.42 0.157 -.0037311 .0231472 educ | 0 (omitted) | male | Male | . (not estimable) | age_grp | 55-59yo | . (not estimable) 60-64yo | . (not estimable) 65-69yo | . (not estimable) 70-74yo | . (not estimable) 75+yo | . (not estimable) | hhsize_eqh_sr | -.1381772 .0353437 -3.91 0.000 -.2074496 -.0689047 sphus_poor | .0029245 .006222 0.47 0.638 -.0092703 .0151193 | work_type | 2. Public sector employee | . (not estimable) 3. Self-employed | . (not estimable) | marital_status | 2. Never married | . (not estimable) 3. Divorced/widowed | . (not estimable) | hhmemb_work | .2724671 .0771439 3.53 0.000 .1212678 .4236664 -------------------------------------------------------------------------------------------- Note: dy/dx for factor levels is the discrete change from the base level.
Comment