Dear Statalist users,
I'm encountering an issue in specifying what lags to use for the GMM-type instruments in -xtdpd-. Specifically, when I have an unbalanced panel,
,
and
all yield different results. I believe this is due to how Stata is dropping missing values, but since the code for -xtdpd- is not accessible I have no way of knowing what exactly is happening. Does anyone know if these are supposed to be different lag specifications? To me, lag(lag(y, k)) is lag(y, k+1) but maybe it's just a notational issue. I searched on the -xtdpd- documentation but did not find a clear answer to my question.
The following is the code and output of a minimum working example, to show that results are consistent when the panel is balanced.
Thank you in advance!
I'm encountering an issue in specifying what lags to use for the GMM-type instruments in -xtdpd-. Specifically, when I have an unbalanced panel,
Code:
L(2/6).L.mvalue
Code:
mvalue, l(3 7)
Code:
L.mvalue, l(2 6)
The following is the code and output of a minimum working example, to show that results are consistent when the panel is balanced.
Thank you in advance!
Code:
. webuse grunfeld, clear . gen rnnb=uniform() . drop if rnnb>0.8 (42 observations deleted) . drop rnnb . xtdpd l(0/2).mvalue l(0/1).(invest) k, dgmmiv(L(2/6).L.mvalue) div(l(0/1).(invest) kstock) Dynamic panel-data estimation Number of obs = 84 Group variable: company Number of groups = 10 Time variable: year Obs per group: min = 3 avg = 8.4 max = 12 Number of instruments = 50 Wald chi2(5) = 199.23 Prob > chi2 = 0.0000 One-step results ------------------------------------------------------------------------------ mvalue | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- mvalue | L1. | .5393142 .115033 4.69 0.000 .3138536 .7647747 L2. | .2656282 .119435 2.22 0.026 .0315398 .4997165 | invest | --. | 2.321183 .4867436 4.77 0.000 1.367183 3.275183 L1. | -3.58443 .5904505 -6.07 0.000 -4.741692 -2.427169 | kstock | 1.87165 .2296433 8.15 0.000 1.421557 2.321742 _cons | -165.8201 93.87971 -1.77 0.077 -349.821 18.18073 ------------------------------------------------------------------------------ Instruments for differenced equation GMM-type: L(2/.).L3.mvalue L(2/.).L4.mvalue L(2/.).L5.mvalue L(2/.).L6.mvalue L(2/.).L7.mvalue Standard: D.invest LD.invest D.kstock Instruments for level equation Standard: _cons . xtdpd l(0/2).mvalue l(0/1).(invest) k, dgmmiv(L.mvalue, l(2 6)) div(l(0/1).(invest) kstock) Dynamic panel-data estimation Number of obs = 84 Group variable: company Number of groups = 10 Time variable: year Obs per group: min = 3 avg = 8.4 max = 12 Number of instruments = 57 Wald chi2(5) = 187.28 Prob > chi2 = 0.0000 One-step results ------------------------------------------------------------------------------ mvalue | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- mvalue | L1. | .5947108 .112416 5.29 0.000 .3743794 .8150421 L2. | .1653495 .1140856 1.45 0.147 -.0582542 .3889532 | invest | --. | 2.097107 .4800003 4.37 0.000 1.156324 3.037891 L1. | -3.333221 .5872146 -5.68 0.000 -4.484141 -2.182302 | kstock | 1.677237 .2219305 7.56 0.000 1.242261 2.112212 _cons | -84.92306 90.64134 -0.94 0.349 -262.5768 92.7307 ------------------------------------------------------------------------------ Instruments for differenced equation GMM-type: L(2/6).L.mvalue Standard: D.invest LD.invest D.kstock Instruments for level equation Standard: _cons . xtdpd l(0/2).mvalue l(0/1).(invest) k, dgmmiv(mvalue, l(3 7)) div(l(0/1).(invest) kstock) Dynamic panel-data estimation Number of obs = 84 Group variable: company Number of groups = 10 Time variable: year Obs per group: min = 3 avg = 8.4 max = 12 Number of instruments = 57 Wald chi2(5) = 187.90 Prob > chi2 = 0.0000 One-step results ------------------------------------------------------------------------------ mvalue | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- mvalue | L1. | .5911101 .1124216 5.26 0.000 .3707678 .8114523 L2. | .1616966 .1134604 1.43 0.154 -.0606817 .3840749 | invest | --. | 2.098092 .4793739 4.38 0.000 1.158537 3.037648 L1. | -3.321696 .5855994 -5.67 0.000 -4.46945 -2.173943 | kstock | 1.687715 .2221867 7.60 0.000 1.252237 2.123193 _cons | -83.42153 90.32579 -0.92 0.356 -260.4568 93.61377 ------------------------------------------------------------------------------ Instruments for differenced equation GMM-type: L(3/7).mvalue Standard: D.invest LD.invest D.kstock Instruments for level equation Standard: _cons . webuse grunfeld, clear . xtdpd l(0/2).mvalue l(0/1).(invest) k, dgmmiv(mvalue, l(3 7)) div(l(0/1).(invest) kstock) Dynamic panel-data estimation Number of obs = 180 Group variable: company Number of groups = 10 Time variable: year Obs per group: min = 18 avg = 18 max = 18 Number of instruments = 79 Wald chi2(5) = 236.16 Prob > chi2 = 0.0000 One-step results ------------------------------------------------------------------------------ mvalue | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- mvalue | L1. | .2401437 .0700625 3.43 0.001 .1028237 .3774638 L2. | -.1160122 .0586921 -1.98 0.048 -.2310467 -.0009778 | invest | --. | 3.993119 .3330965 11.99 0.000 3.340262 4.645976 L1. | -2.694518 .526062 -5.12 0.000 -3.72558 -1.663455 | kstock | -.2895378 .1637345 -1.77 0.077 -.6104515 .0313759 _cons | 826.0328 82.84173 9.97 0.000 663.666 988.3996 ------------------------------------------------------------------------------ Instruments for differenced equation GMM-type: L(3/7).mvalue Standard: D.invest LD.invest D.kstock Instruments for level equation Standard: _cons . xtdpd l(0/2).mvalue l(0/1).(invest) k, dgmmiv(L.mvalue, l(2 6)) div(l(0/1).(invest) kstock) Dynamic panel-data estimation Number of obs = 180 Group variable: company Number of groups = 10 Time variable: year Obs per group: min = 18 avg = 18 max = 18 Number of instruments = 79 Wald chi2(5) = 236.16 Prob > chi2 = 0.0000 One-step results ------------------------------------------------------------------------------ mvalue | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- mvalue | L1. | .2401437 .0700625 3.43 0.001 .1028237 .3774638 L2. | -.1160122 .0586921 -1.98 0.048 -.2310467 -.0009778 | invest | --. | 3.993119 .3330965 11.99 0.000 3.340262 4.645976 L1. | -2.694518 .526062 -5.12 0.000 -3.72558 -1.663455 | kstock | -.2895378 .1637345 -1.77 0.077 -.6104515 .0313759 _cons | 826.0328 82.84173 9.97 0.000 663.666 988.3996 ------------------------------------------------------------------------------ Instruments for differenced equation GMM-type: L(2/6).L.mvalue Standard: D.invest LD.invest D.kstock Instruments for level equation Standard: _cons
Comment